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Vibrationally selective population transfer in electronic transitions involving small Franck-Condon factors
is studied by means of two-photon excitation with pulse sequences applied in counterintutive order. Depending
on the intensity of the pulses, two schemes allow ultrafast adiabatic passage. Both schemes, called STIRAP
and APLIP, are analyzed as a function of the geometry of the electronic states and of the time duration and
intensity of the pulses that drive the transitions. Although both schemes imply adiabatic following, the APLIP
scheme requires pulses of considerably larger intensity than STIRAP, hence operating in a strong adiabatic
regime. Simple adiabatic criteria for high-quality transfer are proposed, and analytic proofs are provided that
show under which conditions STIRAP and APLIP converge. The results of this paper are illustrated with
numerical simulations for two different electronic transitions in the Na2 molecule.

I. Introduction

State selective preparation of molecules in excited states is
often a fundamental step for subsequent study of unimolecular
or bimolecular reactions, with applications in photochemistry,
spectroscopy, and laser technology.1 We consider electronic
transitions that lead to no vibrational excitation in the bond
coordinate. Since usually the equilibrium configurations are
more relaxed in excited electronic states than in the ground state,
the laser pulses must be tailored in specific ways in order to
avoid the direct dipole-preferred Franck-Condon or vertical
transition that leads to vibrational excitation. This is what we
refer herein as controlling non-Franck-Condon transitions.

Several schemes and even general methodologies have been
proposed to find the best pulses that drive the vibrational
population to specific quantum states.2,3 In this paper we study
a class of schemes that involve robust population transfer by
adiabatic passage.4 In these schemes, one usually proceeds by
designing frequency chirped pulses or different pulse sequences
so that the initial (φi(x)) and the target (φf(x)) states are connected
via a single eigenstate of the Hamiltonian in the adiabatic
representation, which is called the transfer state.4

We consider one general solution on the basis of two pulses
that act on the system in counterintuitive order.5-7 That is, the
pulse that drives the transition between a selected intermediate
state,φb(x), and the target stateφf(x), precedes the pulse that
drives the transition betweenφi(x) and φb(x). The method,

initially proposed for population transfer by stimulated Raman
adiabatic passage (STIRAP) in 3-level systems,5,6 has been
experimentally applied to atomic and Raman transitions using
continuous wave (CW) lasers and nanosecond pulses.7 Here we
address the problems involved with its implementation for
selective non-Franck-Condon electronic transitions in the Na2

molecule with pico- or subpicosecond laser pulses. We analyze
the properties of the population transfer as a function of the
geometrical features of the electronic potentials, as well as the
time duration and intensity of the pulses that drive the excitation.

There are other possible ways to address the problem of
selective population transfer in electronic transitions. A very
general methodology uses optimal control8,9 or learning algo-
rithms10 to find the optimal pulses that drive the dynamics to
the desired target state. One difficulty with the methodology of
optimal control is related with the physical interpretation of the
mechanisms underlying the dynamics, which are often obscure.
Also, the optimal dynamics are usually very sensitive with
respect to the final time chosen to maximize the yield of the
desired selective transition, making the results more difficult
to interpret and generalize when considering the properties of
the population transfer as a function of the geometry of the
system and the time duration and intensity of the pulses.
Although there are prospects for devising feasible schemes to
obtain mechanistic information easily applicable to optimal
control design,11 for the type of analysis explored in this paper,
the approach based on schemes designed a priori as the
counterintuitive pulse sequence here proposed is usually simpler.
The dynamical features of the process are now anticipated on
the basis of the properties of analytical or quasi-analytical
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models, which are proposed for the dynamics of simple quantum
systems.12 In this case, the approach is valuable when the
molecular Hamiltonian of the system of interest accepts the
simplifying assumptions of the chosen model, that is, when a
reduced dimensional description of the Hamiltonian provides
trustful results.2 Therefore, a major concern is the implementa-
tion of the model on a realistic scenario.

A general advantage of adiabatic methods over other coherent
excitations is that the adiabatic schemes assess greater stability
on the dynamics relying in the control of very few parameters
with ample margins. However, this economy in the variables
to control is at the expense of energy in the field, since a typical
condition for adiabatic following requires the effective pulse
area to be much larger thanπ 7

(which can sometimes be as much as 100), whereΩeff is the
effective Rabi frequency or radiation coupling term of the
process andτ is the time scale or width of the pulses. This is to
be compared with a minimum ofΩeffτ ) π required for
population inversion according to the Rabi formula, which
underlies many other possible coherent excitation schemes.

In two-photon electronic transitions, the effective Rabi
frequency depends on the amplitude of the laser times the
Franck-Condon amplitudes between the chosen intermediate
quantum stateφb(x) and bothφi(x) andφf(x). In STIRAP, the
wave functionφb(x), which we call the wave function bridge,
must be orthogonal to the adiabatic transfer state. The adiabatic
passage relies on a fine engineering of the Hamiltonian in the
adiabatic representation, which usually requires isolatingφb(x)
from all other vibrational levels. For some non-Franck-Condon
electronic transitions it is not always possible to find a proper
intermediate state that satisfies these requirements using ul-
trashort laser pulses. For instance, following eq 1, for smallτ,
adiabatic following requires largeΩeff. For small Franck-
Condon factors the laser amplitudes must be very large, inducing
other preferred vibronic transitions and breaking the validity
of the 3-level Hamiltonian description required for STIRAP.
In the STIRAP frame, the adiabaticity and selectivity cannot
be restored by further increasing the amplitudes of the pulses.
As a consequence of the time-energy uncertainty principle, in
this regime a wave packet can be formed and subsequently
evolve, much in the same way as (or actually complementary
to) the way the time uncertainty of femtosecond pulses can be
hold responsible for inducing the dynamics in ultrafast processes.
Therefore, a completely new model must be used to first
understand and then control the dynamics in these conditions.

Several interesting phenomena have been predicted and
observed by using strong ultrafast laser pulses.13 The underlying
model to understand processes such as bond softening14 and
stabilization15 is based on the structure of the electronic
potentials in the adiabatic representation, so-called light-induced
potentials (LIPs).13 Recently, counterintuitive pulse sequences
have been proposed to shape dynamically the structure of the
LIPs so as to allow the population transfer of the vibrational
wave function between different electronic states.16 Adiabatic
passage by light-induced potentials (APLIP) has been studied
and generalized for different scenarios and purposes.16-22 In
comparison with STIRAP, the APLIP scheme can be thought
of as an adiabatic scheme that requires only crude engineering
of the Hamiltonian. Increasing the pulses amplitude introduces
more energy in the system, so that the intermediate electronic
potential can be considered as a pool of wave function bridges
that the system uses to go fromφi(x) to φf(x). In this situation

the analysis of the adiabatic requirements needs further elucida-
tion, since eq 1 no longer sets sufficient conditions for selective
population transfer.

In this paper we are primarily concerned with analyzing
properties of the population transfer in APLIP on the basis of
the simplest Hamiltonian model, as a function of the geometry,
time duration, and intensity of the pulses, and comparing these
properties with those of the STIRAP method. The organization
of this paper is the following. In section 2 we introduce the
molecular model of the Na2 molecule and the numerical methods
employed to solve the dynamics in that system. In particular
we propose the optimization of two selective non-Franck-
Condon electronic transitions to different final electronic states.
In section 3 we consider an implementation of STIRAP in Na2

in view of the basic properties of the STIRAP Hamiltonian and
we study the subsequent dynamics of the system. In section 4
we show how the population transfer depends on the amplitude
and duration of the pulses. In particular it is shown where the
different regimes of STIRAP and APLIP work. In section 5 we
study the dynamics via APLIP and we analyze the role of
geometry, intensity, and duration of the field and show when
the STIRAP and APLIP dynamics converge. In section 6 are
the final remarks.

II. Molecular Model and Numerical Procedure

We choose the Na2 dimer as our molecular candidate to test
the previous adiabatic schemes, since the electronic curves of
many excited states are well-known and the energetics of the
system is well suited for experimental implementation. In fact,
Na2 was the first molecule where STIRAP was demonstrated.6

In Figure 1 we show the electronic curves that participate in
the model. Our initial state is the zeroth vibrational level in the
ground electronic state, that we call (X,0), with wave function
φ0

X(x). The goal is to invert the population to the zeroth
vibrational level of either the excited electronic state B1Πg,
which we name asφ0

B(x) or (B,0), or the excited electronic
state C1Σg, which we nameφ0

C(x) or (C,0).
In both excited configurations the bond is more relaxed than

in the ground state, and therefore, the transitions that we are
considering are highly non-Franck-Condon (see Figure 1).
However, whileφ0

X(x) still overlaps withφ0
C(x), its overlap

with φ0
B(x) is negligible. The results of population transfer

depending on the target state selected show the different
sensitivity of STIRAP and APLIP with respect to the geometry
of the excited states.

Ωeffτ . π (1)

Figure 1. Na2 potentials considered for population transfer from the
initial to two possible target wave functions, defining the so-called XAB
and XAC systems. Depending on the final state, the proposed transition
implies a larger or smaller displacement of vibrational population along
the bond coordinate, so that the overall two-photon transition can be
almost Franck-Condon type (XAC) or highly non-Franck-Condon
type (XAB).
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The numerical results of the paper are obtained by solving
the Schro¨dinger equation driven by two control fields,ε1(t) and
ε2(t), in the rotating wave approximation (RWA) and in the
coordinate representation, including only 3 potential curves for
each calculation (the ground, the intermediate electronic po-
tential A 1Σu, and the chosen final electronic state):

Here I is the unity matrix andUi(x) are the energy shifted
potentials:U1(x) ) VX(x), U2(x) ) VA(x) - pω1, U3(x) ) VB(x)
- p(ω1 + ω2) or U3(x) ) VC(x) - p(ω1 + ω2), with ω1 andω2

the laser carrier frequencies. To simplify the analysis regarding
how the geometry of the potentials affects the results, we assume
the Franck-Condon approximation and, without loss of gen-
erality, writeµ12(x) ) µ23(x) ) 1. In the coordinate representa-
tion the Rabi frequencies are then exactly the laser amplitudes
in frequency units,Ω1(t) ) ε1(t)/p andΩ2(t) ) ε2(t)/p, where,
following the RWA, the pulses are represented only by the
envelope function. We choose Gaussian-shaped pulses for all
the results presented in the paper,ε1(t) ) ε1

0 exp(-(t ( τ)2/
2σ2) andε2(t) ) ε10 exp(-(t - τ)2/2σ2), where 2τ is the time
delay between the pulses. Equation 2 is solved by a standard
split-operator propagator combined with fast Fourier transform
techniques. More details can be found in ref 23.

III. Stirap in Molecular Systems

A. Population Inversion in Molecular Systems via
STIRAP. The STIRAP scheme is a method of adiabatic passage
that controls the population transfer via an intermediate level
by applying a counterintuitive pulse sequence, such that the laser
that couples the intermediate (φb(x)) with the target state (φf(x)),
ε2(t), precedesthe laser that couples the initial state (φi(x)) with
φb(x), ε1(t). To implement the STIRAP scheme in any realistic
system, one needs to find a good intermediate state, such that
its wave function works as an effective bridge between the initial
and final states. The efficiency of the method relies on the
validity of the model, whose general Hamiltonian, implying the
rotating wave approximation (RWA) and using resonant pulses,
is formulated as7

The coupling elements are defined in terms of the Rabi
frequencies,Ω1(t) ) ε1(t)µib/p and Ω2(t) ) ε2(t)µbf/p, where
µib andµbf are the dipole moments between the “bridge” state
and the initial and final states, respectively.

The physical mechanism of STIRAP is easily explained by
following the dynamics in the adiabatic representation, which
is obtained by diagonalizing the Hamiltonian via the rotation
matrix

whereθ(t) ) arctan(Ω1(t)/Ω2(t)) is the adiabatic mixing angle.
The transfer state responsible for the adiabatic passage is the
dressed state (eigenstate of the adiabatic Hamiltonian) of zero
eigenvalue:

HereΩ0(t) ) xΩ1(t)
2+Ω2(t)

2 serves as a normalization factor.
By the choice of a counterintuitive pulse sequence (such that
Ω2(t) . Ω1(t) at initial times andΩ2(t) , Ω1(t) at late times),
Φ0(x,t) correlates withφi(x) at initial times and withφf(x) at
late times and, therefore, as long as the dynamic evolution is
adiabatic, serves its purpose as a transfer state. In its simpler
form, the adiabaticity can be assessed7 if

whereσ is the time delay or the time width of the pulses. The
Ω0 here can be set as its value with maximum overlap of the
pulses, although it is usually evaluated by introducing the peak
amplitudes for both pulses, as we will do in this paper. We can
define a parameter

that measures the adiabaticity of the dynamics. In STIRAP, the
adiabatic parameter is the averaged pulse area. The identifying
feature of adiabatic passage via STIRAP is that the population
in the wave function bridge is zero during the entire process,
sinceΦ0(x,t) is orthogonal toφb(x).

B. Molecular Geometry Considerations: Importance of
the Wave Function Bridge. In this section we consider the
practical problems of implementing and optimizing the STIRAP
scheme in molecular systems, namely in the Na2 dimer.
Following the nomenclature and procedure of section 2, the
initial state of the STIRAP system,φi(x), is now φ0

X(x). We
consider two different final states,φf(x) ≡ φ0

B(x) or φ0
C(x),

corresponding to two different STIRAP systems, the XAB
system and the XAC system. The first problem consists of
finding the best possible wave function bridge in the intermedi-
ate electronic potential,φb ≡ φj

A(x), such that bothµib andµbf

are as large as possible. In the Franck-Condon approximation,
µib ≡ p0j

XA ) 〈φ0
X(x)|φj

A(x)〉 andµbf ≡ pj0
AB ) 〈φj

A(x)|φ0
B(x)〉

(or equal topj0
AC ) 〈φj

A(x)|φ0
C(x)〉, depending on the target

state selected). In Figure 2 we show the absolute value of the
Franck-Condon amplitudes as a function of the intermediate
state vibrational quantum numberj. Also shown are the Franck-
Condon amplitudes related to the overlap betweenφj

A(x) and
adjacent states on the ground (φ1

X(x)) and final excited potentials
(φ1

B(x) andφ1
C(x)).

First consider Figure 2a. Due to the geometry of the three
electronic potentials and a general reflection principle,24 the
repulsive part of theVA(x) curve is a mapping in the energy
space of the spatial coordinate dependence of the vibrational
wave functions of the ground electronic state, whereas the
attractive part ofVA(x) serves as a mapping of the vibrational
wave functions of B1Πu. Since the role of the intermediate
potential with respect to the ground and excited states is quite
symmetrical, the mapping of the ground and excited wave
functions inVA(x) greatly overlaps;25 that is, many intermediate
states can serve the purpose of a wave function bridge. The
best compromise for having large Franck-Condon amplitudes
in both transitions is obtained choosingj ) 10, φ10

A(x). Then,
p10

X,A ) 0.306 andp10,0
A,B ) 0.315. The choice of a good wave

Φ0(x,t) ) 1
Ω0(t)

(Ω2(t)φi(x) - Ω1(t)φf(x)) (5)

Ω0σ . 1 (6)

êS ≡ Ω0σ (7)

ip
∂

∂t(ψ1(x,t)
ψ2(x,t)
ψ3(x,t) ) ) [- p2

2m
∂

2

∂x2
I +

(U1(x) -pΩ1(t)/2 0
-pΩ1(t)/2 U2(x) -pΩ2(t)/2
0 -pΩ2(t)/2 U3(x) )](ψ1(x,t)

ψ2(x,t)
ψ3(x,t) ) (2)

HSTIRAP ) p
2 (0 -Ω1(t) 0

-Ω1(t) 0 -Ω2(t)
0 -Ω2(t) 0

) (3)

RS(t) ) 1

x2 (sin θ x2 cosθ sin θ
1 0 -1
cosθ -x2 sinθ cosθ ) (4)
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function bridge is decisive in reducing the amplitudes of
nonresonant paths that break the adiabaticity and selectivity of
STIRAP.22

In Figure 2b we show the absolute value of the Franck-
Condon amplitudes corresponding to the XAC system. The
geometry of the potentialVC(x) is very similar to that ofVA(x).
Therefore, transitions between both electronic states are intrinsi-
cally quite selective, implying conservation of the vibrational
quantum (A,V) f (C, V). The mappings ofφ0

X(x) andφ0
C(x)

on VΣu(x) almost do not overlap, and it is difficult to find a
good wave function bridge. The best compromise is obtained
for j ) 2. Then,p0,2

XA ) 0.123 andp2,0
AC ) 0.103. The Franck-

Condon amplitudes are 3 times smaller than in the previous
case. More importantly, the Franck-Condon amplitudes of
unwanted adjacent transitions, although nonresonant, are larger
and therefore make their related transitions geometrically more
favorable than the transitions involved in the STIRAP path.

C. Results of Population Transfer via STIRAP in Na2. In
Figure 3a we show the population histories for the STIRAP
dynamics in the XAB system. We use two pulses of Gaussian
shape with time widthσ ) 1.5 ps and maximum amplitudes
ε1

0 ) ε2
0 ) 5 × 10-4 au, corresponding to a peak intensity of

9 GW/cm2. The time delay between the pulses is 2τ ) 2.5 ps.
For these parameters we can estimate an adiabatic parameter

êS ) σx(ε1
0p0,10

XA)2+(ε2
0p10,0

AB)2 ∼12.7, which corresponds
approximately with an effective pulse area of 4π. Full population
passage to (B,0) takes place with minor temporary excitation
of the intermediate state. This result is in perfect agreement with
the theory of STIRAP and indication that the 3-level Hamilto-
nian model can accurately describe the dynamics of the system
in this regime. Reasonably good adiabatic population transfer
is even possible with femtosecond pulses, withσ ) 600 fs. Only
for larger fields the Rabi frequency of competing processes can
exceed the energy difference between (A,11) and (A,10),

breaking the population locking condition and leading to Rabi
oscillations of population to and from the wave function
bridge.22

In Figure 3b-d we show the results of implementing STIRAP
in the XAC system, using pulses with the same width and time
delay as before. In case (b) the amplitude of the pulses is chosen
so that the effective pulse area is also 4π. This case should yield
similar results as the previous one if the 3-level Hamiltonian
model were adequate to describe the dynamics of the system.
However, the population dynamics follows a completely dif-
ferent behavior. First, there is population passage to the
intermediate state (A,3), which is not the selected wave function
bridge. Second, almost no population is transferred to the target
wave function. Finally, there is some excitation of several levels
in every electronic state.

The origin of the failure in the adiabatic passage stems from
the poor Franck-Condon factors associated with the best-
available wave function bridge, (A,3). Since the Franck-Condon
amplitudes are 3 times smaller than those for the XAC system

andêS ) σx(ε1
0p0,2

XA)2+(ε2
0p2,0

AC)2, to conserve the effective
pulse area the amplitude of the pulses must be approximately 3
times larger than before. This amplitude enables nonresonant
paths that, although not energetically favored, are geometrically
preferred. The main source of instability in the STIRAP scheme
is associated with changes in the sign of the Franck-Condon
amplitudes of adjacent transitions. Indeed, in the limit of
degenerate intermediate states with dipole moments of opposite
sign, it is not possible to prepare the adiabatic dark stateΦ0(x,t)
that drives the population in STIRAP.26

There are no good STIRAP solutions for the XAC system
using pulses with 1.5 ps time widths. In Figure 3c we show the
best possible result. This corresponds with using pulses of
approximately the same intensity as in the XAB system, which
in our case implies an effective area of only 1.5π, clearly below
the threshold of adiabatic passage. For this area, the dynamics

Figure 2. Absolute value of the Franck-Condon amplitudes for transitions involving different vibrational states of the intermediate electronic
potential AΣu and a few vibrational states of the initial and target electronic potential. In the XAB system, the Franck-Condon amplitudes reflect
the shape of the wave functions in the XΣg and BΠg potentials by a reflection principle. However, in the XAC system the shape of the electronic
potential CΣg is very similar to AΣu, so that the Franck-Condon amplitudes involving vibrational wave functions of A and C are approximately
Dirac delta functions. For the overall two photon transition we must select a “good wave function bridge”, that is, a single intermediate state that
maximizes the Franck-Condon amplitudes for both transitions, between the initial state and the intermediate state, and between the intermediate
state and the target state. In the XAB system this is achieved with the encircled state (A,10). In the XAC system the best wave function bridge
corresponds to state (A,2) but involves quite smaller Franck-Condon amplitudes than in the previous system.
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of the 3-level Hamiltonian model reproduce well the dynamics
in Na2 (which are obtained solving eq 2). This fact indicates
that the dynamics is selective, although only 20% of population
is now transferred to the target state and the intermediate state
is populated. The adiabaticity cannot be improved by increasing
the amplitudes of the fields, as Figure 3b,d shows. In case (d)
the effective area corresponds to 7.5π. The population trans-
ferred to the target state increases with respect to the 4π area,
but the dynamics is clearly not selective nor robust under
changes in the pulse parameters; i.e., the process is no longer
adiabatic. The STIRAP dynamics can only be observed by using
much longer laser pulses, with time widths of the order of 30
ps.

IV. From the Adiabatic to the Strong-Adiabatic Regime

STIRAP is a very general and powerful scheme, and we have
seen that it can be implemented in molecular systems even in
the subpicosecond regime. Physical bounds can be approxi-
mately framed by the conditionsêS g 10 (the exact number
depending upon the system and pulse shape) andΩ0 < ωV,
where we identifyωV as the vibrational quantum in any of the
potentials implied, although, as we have seen, the energy
separation of levels inU2(x) is the main concern. Beyond that
limit the simple assumptions of the model break. Not only do
other states become accessible, thus reducing the selectivity of
the scheme, but the population no longer flows via a single
adiabatic dark state.

However, recently it has been observed that adiabatic passage
can be recovered using much more intense pulses, in what we
call a strong-adiabatic regime. The mechanism of population
transfer is different and the method that exploits and generalizes
its properties has been named APLIP. We analyze its features
in the following sections. Figure 4 summarizes all the results
of efficiency and selectivity of population passage as a function

of the field amplitude (parametrized byE0 ) x(ε1
0)2+(ε2

0)2)

for different time scales and final electronic potentials. Figure
4a,c,e shows the results for the XAB system using Gaussian
pulses with time widthsσ ) 6, 1.5, and 0.6 ps, respectively,
while Figure 4b,d,f shows the results for the XAC system using
the same set of pulses as before. The properties of population
transfer are monitored by following the population in the target
vibrational state at final time, the electronic population in the
target electronic state at final time (so that proximity of both
curves measures the selectivity of the method), and the time-
averaged population in the intermediate electronic state,〈PA〉
) ∫0

tdt′|〈ψA(x,t′)|ψA(x,t′)〉|2/σ. Also shown are results of popu-
lation transfer when the process is performed out of resonance;
that is, when the lasers are tuned 0.014 au (∼3100 cm-1) above
the resonance with the intermediate potential, all other param-
eters remaining the same. These conditions will be revealed to
be particularly important when we analyze population passage
via APLIP in the strong-adiabatic regime.

Let us start analyzing the results for larger time widths (σ )
6 ps,τ ) 10 ps) in the XAB system. Inspection of the results
of Figure 4a show the expected behavior of STIRAP for lower
field amplitudes. Once the adiabatic requirement is fulfilled,
the method is highly efficient and selective and its signature is
clearly noticed as the drop in〈PA〉 reveals a dark resonance
process (no fluorescence). For larger values inE0 the population
in the intermediate state is no longer locked and the population
does not reach the final electronic state. However, as the field
amplitude is further increased, the STIRAP scheme seems to
gain some efficiency, although now the population transfer is
not selective and is very sensitive to the exact value ofE0; that
is, the method is no longer adiabatic. Finally for even stronger
fields, the method recovers its previous efficiency and selectiv-
ity. Despite using strong fields tuned in resonance with
transitions to intermediate states, the average population inVA(x)
also decreases as if it were locked. Moreover the results can be
improved by tuning both lasers off resonance with respect to

Figure 3. Population histories of the most important states participating in the dynamics of a STIRAP process for the XAB system (a) and the
XAC system (b-d). In the XAB system, perfect STIRAP behavior is possible from (X,0) to (B,0) via the (A,10) state, using pulses with approximate
pulse areaêS ∼ 4π and 1.5 ps time widths. In the XAC system, the Franck-Condon amplitudes are smaller even for the best wave function bridge.
Therefore, to haveêS ∼ 4π (Figure 2b) the amplitudes of the pulses must be larger, enabling other transitions. The adiabatic transfer state is no
longer orthogonal to the intermediate state, which is highly populated, stopping the passage to the target state. The 3-level Hamiltonian provides
only a valid representation of the dynamics for smaller pulse areas, likeêS ∼ 1.5π in Figure 2c, before the threshold of adiabatic passage. Increasing
the pulse area, likeêS ∼ 7.5π in Figure 2d does not restore the adiabaticity requirements.
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VA(x). This is the regime of strong-adiabatic transfer, where the
population transfer follows the APLIP properties.

The same qualitative features in the population transfer are
observed in Figure 4b for the XAC system. The STIRAP
passage is not as perfect as in the previous case, and a maximum
of 80% yield is obtained. The average population in the
intermediate state is not so small, showing that the dark
resonance is not perfect. This is because the Franck-Condon
factors for the best wave function bridge found are clearly
smaller than those for the XAB system, so that stronger pulses
are required to obtain essentially the same pulse area as before.
As in the discussion of the previous section, before reaching
the threshold for successful population transfer, the Rabi
frequency of the nearest off-resonant path becomes larger than
the detuning, so that both paths interfere and destroy the dark
resonance. For higher pulse intensities, in the strong-adiabatic
regime, the population passage is however perfect, since is not
affected by fine details in the adiabatic transfer state. On the
contrary, although the Franck-Condon factors are smaller (at
least for the intermediate state that is on resonance), the
threshold of APLIP appears at lower amplitudes than in the XAB

system. The difference between STIRAP and APLIP is smaller
for this geometry of the potentials.

Figure 4c-f shows how the threshold for population transfer
changes for both STIRAP and APLIP as the time width of the
pulses (and therefore the time scale of the transfer) is reduced.
In STIRAP, according to eq 7, a decrease in time leads to a
linear increase inΩ0 and therefore inE0. For the XAB system
even with subpicosecond pulses (σ ) 600 fs) adiabatic passage
via STIRAP yields almost 85%. The best result is obtained
before the threshold of full adiabatic passage, so that the
population is not perfectly locked in the wave function bridge.
But for larger intensities, destructive interference with parallel
paths destroys the adiabatic passage. In the XAC system of
course, STIRAP is not possible for shorter pulses. On the other
hand, the threshold for adiabatic passage via APLIP is almost
independent of the time scale of the process, at least if the pulses
are long enough so that the dynamics can still be considered
adiabatic from the kinetic point of view. The APLIP dynamics
can be achieved with subpicosecond pulses, especially in the
XAC system. The dependence of APLIP and STIRAP with
respect to the geometry of the potentials is thus very different.

Figure 4. Efficiency and selectivity of the two-photon transfer as a function of the effective field amplitudeE0, for different pulse time widths and
different target states. The curve with open circles represents the final population on the target electronic state for the resonant STIRAP-type
transition, and the light gray shaded curve gives the population on the target vibrational state (selective transition) at final times. The time-averaged
population on the intermediate electronic state,〈PA〉, is given by the dot-dashed curve, whose logarithmic scale is represented at the right side of
the plot. At the top row are shown the results for the XAB system, while at the bottom row are the results for the XAC system. From left to right
the time widths of the pulses change asσ ) 0.6, 1.5, and 6 ps. For the XAB system STIRAP is possible in all the time widths tested, while only
some STIRAP transfer (yield of∼0.8) is possible for the larger time widths in the XAC system. Nearly in all cases the limit for adiabatic passage
via STIRAP is aroundE0 ∼ 10-3 au. On the other hand, APLIP is always possible in the XAC system but fails for very short time widths in the
XAB system. Also the threshold of adiabatic passage via APLIP starts at largerE0 in the XAB system than in the XAC system. Therefore, the
transition from STIRAP to APLIP requires a smaller increase in pulse area in the XAC system. Except for very short pulse time widths, the
performance in APLIP can be improved by detuning the lasers with respect to any intermediate state. The solid circles and the dark gray shaded
curves provide respectively the overall population in the target electronic state and in the target vibrational level (selective transition) at late times
for detuning∆ ) 0.014 au to the blue of the resonance with the intermediate level. The dashed line represents〈PA〉.
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V. Population Inversion in Molecular Systems via APLIP

A. Population Inversion in Molecular Systems via APLIP.
To analyze features of the APLIP dynamics, Figure 5 shows
the population histories for both the XAB and XAC systems,
using pulses withσ ) 1.5 ps,τ ) 2.5 ps, andE0 ) 0.1 au. The
frequencies are detuned to the blue of the resonance with the
intermediate state by 0.014 au. Now the Rabi frequencies for
many different paths greatly exceed the energy difference from
the resonance, so that many vibrational levels of the ground
and final electronic potentials are excited. However, the overall
dynamic picture remains very simple. In Figure 5a we observe
the characteristic pattern of the APLIP dynamics. First, the
population is mainly excited to high vibrational levels in the
ground potential by means of Raman Stokes processes (although
nonselective two-photon absorption is also present); this is
rapidly followed by two-photon absorption from these levels
to highly excited vibrational levels of the final potential; finally,
by selective two-photon deexcitation (at some point similar to
Raman anti-Stokes processes) all the population is driven to
the target state, (B,0).

Using exactly the same laser parameters we observe quali-
tatively similar results for both systems. The transient excitation
of highly excited vibrational levels in the ground and target
electronic potentials is smaller for the XAC system. The
effective time required to complete the population transfer is
also smaller in this case. In the next section we will explain
this feature on the basis the properties of the adiabatic passage
via APLIP. In general, the APLIP dynamics is clearly less
sensitive than STIRAP in regard to the geometry of the
potentials. Similar results are also found using shorter or longer
pulse time widths, as Figure 4 shows. Therefore, the adiabatic
threshold of the APLIP dynamics is also weakly dependent on
the pulse duration.

B. APLIP Mechanism. The simplest explanation of the
physical mechanism of APLIP is based on the concept of light-
induced potentials (LIPs). The basic Hamiltonian required to
understand the APLIP dynamics includes three electronic
potentials, as in eq 2,

The LIPs are the adiabatic (or dressed) potentials obtained by
diagonalizing the part of the Hamiltonian comprising the
electronic potential curves and laser couplings (the matrix in
eq 8).

The mathematical formalization proceeds by finding the
proper transformation matrix,Ra(x,t), such that the Schro¨dinger
equation for the adiabatic wave functions

where ΦBA(x,t) ) (Φ+(x,t),Φ0(x,t),Φ-(x,t))† )
Ra

-1(x,t)(ψ1(x,t),ψ2(x,t),ψ3(x,t))† is the diagonal in the potential
energy matrixULIP(x,t). If the initial wave function is placed
on a single LIP, then it will move under the influence of a single
potential. There are two terms that conspire against the adiabatic

motion of the wave packet, transferring population among
different LIPs and changing the shape of the wave packet. These
are the first and the last terms in the right-hand side (RHS) of
eq 9. Usually, the first term is referred to as the spatially
nonadiabatic term, and the last one, as the temporally nonadia-
batic term.20 For a 3-electronic state system the LIPs are labeled
for decreasing order of energy as{U+(x,t), U0(x,t), U-(x,t)}.
BothRa(x,t) andULIP(x,t) have analytical expressions, but their
forms are too complicated to facilitate understanding of the
process.

To gain insight into the mechanism of APLIP, we show in
Figure 6 a pictorial sketch of how the LIPs look as the pulses
vary in time. Notice that the potentials here are shifted by the
energy of the photons, in the spirit of the RWA,U1(x) ) V1(x),
U2(x) ) V2(x) - pω1, andU3(x) ) V3(x) - p(ω1 + ω2).

The initial wave function is inU1(x), which, according to
Figure 6, correlates with the left well ofU0

LIP(x,t). The overall
APLIP process consists of moving this wave function to the
right well, where it correlates withU3(x). Therefore, the physical
mechanism of the adiabatic passage requires the elimination of
the internal barrier,Ebar, that separates both wells inU0

LIP(x,t),
at a certain time. The scheme of Figure 6 shows how this occurs
using a counterintuitive sequence of pulses blue-detuned with
respect toV2(x). At time t1 the amplitude of the second pulse,
ε2(t), is large, strongly couplingU2(x) with U3(x). By dynamic
Stark shift the energy difference between both potentials
increases, so that the right well ofU0

LIP(x,t) is elevated and the
internal energy barrier increases. The first pulseε1(t) causes a
similar Stark shift onU1(x) which raises the energy of the left
well of U0

LIP(x,t). Therefore, asε2(t) decreases andε1(t) increases
there is an interval of time aroundt2 where the internal energy
barrier is suppressed, allowing the displacement of the wave
packet. Finallyε1(t) decreases as well, so that the energy barrier
is recovered and the wave packet cannot recross. During the
entire time evolutionU-

LIP(x,t) behaves approximately like
U2(x), except for overall shifts in energy caused by the dynamic
Stark effects.

HAPLIP ) - p
2m

∂
2

∂x2
I +

(U1(x) -pΩ1(t)/2 0
-pΩ1(t)/2 U2(x) -pΩ1(t)/2
0 -pΩ2(t)/2 U3(x) ) (8)

ip
∂

∂t
ΦBA(x,t) ) [-Ra

-1(x,t)
p2

2m
∂

2

∂x2
Ra(x,t) + ULIP(x,t) -

iRa
-1(x,t)

∂

∂t
Ra

-1(x,t)]ΦBA(x,t) (9)

Figure 5. Population histories of the most important states participating
in the dynamics of an APLIP process for the XAB system (a) and the
XAC system (b). In both cases the pulse parameters are the same.
Population transfer via APLIP requires substantial vibrational excitation
in the ground and target electronic states at intermediate times, although
the A Σu electronic state is barely populated. This transient excitation
is larger in the XAB system than in the XAC system.
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The motion of the wave packet from the left well to the right
well implies the sequence of dynamical processes that we
observe in the population histories. First the wave packet
overlaps higher vibrational levels inU1(x), then it overlaps
higher vibrational levels inU3(x), and finally the wave packet
stops at the equilibrium position inU3(x). The selection of the
ground vibrational level inU3(x) is guaranteed if the dynamics
is both temporally and spatially adiabatic, so that the shape of
the wave packet (its number of nodes) is not distorted.

C. Adiabatic Thresholds in APLIP: Geometry Consid-
erations. As observed in the results of Figure 4, there is an
energy gap between the region where STIRAP works and the
region where APLIP is effective. The threshold for APLIP
depends on the geometry of the potentials but is not very
sensitive with respect to changes in the pulse durations. It is
therefore obvious that different adiabatic requirements must be
found to adequately describe the APLIP transfer. In principle,
a thorough examination of nonadiabatic couplings27 induced by
the kinetic term and the time-dependent term in eq 9 is needed
to derive a single (or multiple) parameterêA that replaces the
STIRAP conditionêS. This procedure cannot be performed
analytically without approximations. Here we will follow a
simpler physically motivated model that reflects some of the
adiabatic requirements of the method, allowing for a simple
parametrization ofêA.

Let us follow the displacement of the vibrational population
along the bond distance, from the minimum inU1(x) to the
minimum in U3(x). In Figure 7 we show the electronic states
dressed with the photon energies for both the XAB and XAC
systems. In order that the wave function can reach the
equilibrium position inU3(x), the pulses must temporally provide
an energy larger than the energy barrier that separates both
minima. This stage corresponds to the Raman Stokes processes
that initiate the dynamics. In the XAB system, the internal
barrier Ebar ∼ 640 cm-1, which implies that the wave packet
must gain in average four vibrational quanta in the Raman
process to overcome the barrier. In the XAC system,Ebar ∼
110 cm-1, so that only one vibrational quantum is necessary to

overcome the barrier. Indeed the initial and final wave functions
partially overlap, so that the probability for a two-photon
Franck-Condon transition is not zero. When both pulses fully
overlap, the effective two-photon Rabi frequencyΩeff must be
larger thanEbar, allowing the wave packet to move from one
potential to the other, which is signaled as a two-photon
absorption process. Finally, as the pulses are switched off, the
transient energy disappears, and by two-photon resonance the
wave packet ends up in the bottom ofU3(x). Since in APLIP
the whole wave function is transferred from one potential to
the other, the energy demands for adiabatic passage will depend
on the displacement of the wave packet along the bond distance
that is required to reach the final equilibrium configuration. For
highly non-Franck-Condon transitions, as in the XAB system,
we expect larger adiabatic requirements than for more “vertical”
type transitions.

We will now assume that the wave packet is a classical
particle moving from the minimum inU1(x) to U3(x) at speed
Vc. The laser coupling via the effective Rabi frequencyΩeff must
provide the kinetic energy so that the particle overcomes the
barrier. A Landau-Zener model gives the probability of crossing
the barrier, which is12

with

wherexc is the crossing point. We assume that the process of
crossing the barrier adequately describes the adiabatic passage
of the wave packet to the final electronic state. The adiabatic
parameter of APLIP is therefore proposed asêA ) Ωeff

2/2R.

The parameterR can be approximately evaluated in several
ways. For example, if we consider thatU1(x) and U3(x) are

Figure 6. Scheme of the mechanism of population transfer via APLIP.
The cartoon shows the LIPs at three different times. The wave packet
moves in the initial LIP,U0

LIP, that has an internal barrier that prevents
the crossing of the wave packet from the left well corresponding to
the initial configuration,V1(x), to the right well corresponding to the
target configuration,V3(x). At intermediate timesU0

LIP shows no internal
barrier allowing the motion of the wave packet to the desired final
position.

Figure 7. Energy-shifted electronic potentials in the diabatic repre-
sentation showing the energy barrier that the initial wave function must
surmount to move along the bond distance before reaching the desired
state. In the XAB system (a) the energy barrier and the separation
between the equilibrium positions is much larger than in the XAC
system (b), where the initial and final wave functions partially overlap.

PU1fU3
≈ 1 - exp(-πΩeff

2/2R) (10)

R ) |Vc

2p

d(U3 - U1)

dx |
x)xc

(11)

8266 J. Phys. Chem. A, Vol. 107, No. 40, 2003 Malinovsky et al.



displaced harmonic potentials with the same fundamental
frequency,ω, then

where m is the reduced mass of the molecule andd is the
distance between the potential minima. In other cases we will
use the average frequency of the potentials involved. Since we
assume that the kinetic energy must be larger than the energy

barrier, Vc > (2Ebar/m)1/2. Substitutingd ) x8Ebar/mω2, we
obtainR ∼ 2ωEbar/p.

In this model the detuning of the intermediate potential is
needed to avoid the crossing of the potentialsU1(x) andU3(x)
by U2(x) in the course of the particle’s trajectory. This is
achieved if the absolute value of the detuning|∆| is made at
least larger thanEbar. The model cannot explain the avoided
crossing withU2(x) in resonant conditions, since it does not
incorporate quantum effects as those in the STIRAP dynamics.
For almost resonant conditions, such thatΩ1(tc),Ω2(tc) . |∆|,
the effective Rabi frequency is approximatelyΩ0. (These are
the conditions that we are exploring in this paper.) Summing
up the pieces, we obtain for the adiabatic parameter

Although the expression forêA does not depend on the time
duration of the pulses, we will still callêA an effective pulse
area, to be compared with that of the STIRAP process.

We analyze now whether eq 13 describes correctly the
adiabatic features of APLIP. We can fix a particular final
probability in the target electronic state, for exampleP3 J 0.95,
to specify the threshold of adiabaticity in APLIP dynamics. From
the results of Figure 4 we obtain the values ofΩ0 (which isE0

for APLIP in the Franck-Condon approximation) that cor-
respond to that choice of threshold,Ω0(P3 J 0.95). For the
nonresonant case (|∆| ) 0.014 au) we obtain in the XAB system
Ω0(P3 J 0.95)∼ 0.030, 0.032, and 0.031 au forσ ) 0.6, 1.5,
and 6 ps, respectively. In the XAC system we obtainΩ0(P3 J
0.95)∼ 0.017, 0.014, and 0.014 for the same set of pulses. It
is observed thatΩ0(P3 J 0.95) is larger in the XAB system,
which has a larger energy barrierEbar than in the XAC system,
while the results are not very sensitive to the duration of the
pulses. Assuming thatΩeff ≈ Ω0 and using eq 13, we obtain
êA ∼ 50π for all of the results, showing good qualitative
agreement.

Quantitatively, the values ofêA are overestimated if we
consider them to be effective pulse areas. Given that the
population transfer is still not perfect, we could expectêA to be
of the order of 2-3π, using the same criteria as in the STIRAP
case. The overestimation is due to several reasons. First, since
∆ ≈ Ω0, the effective two-photon Rabi process does not
correspond to that of a truly resonant process, and actuallyΩeff

< Ω0. Another reason is that in the derivation of eq 13 we
estimateR assuming the minimum possible kinetic energy for
the particle.

There are two more features of the adiabatic passage that are
correctly described by eq 13, at least in a qualitative way. The
first one is the quadratic dependence ofêA with respect toΩ0,
êA ∝ Ω0

2. This fact explains why the yield of population transfer
in the onset of the adiabatic threshold increases much faster in
APLIP than in STIRAP, whereêS ∝ Ω0 (see Figure 4). The

second one is the dependence ofêA with respect to the required
displacement of the population along the bond distance in order
to reach the target state. Assuming harmonic oscillators and
substitutingEbar in terms of the spatial distance between the
initial and final equilibrium positions,d, we obtain

Fixing a specific yield for the final population in the target
electronic state (for instanceP3 J 0.95) amounts to fixing the
adiabatic requirements, so that we obtain a linear relation
between the threshold Rabi frequency and the distance between
the potentials,

In Figure 8 we show howΩ0(P3 ) 0.95) changes as a function
of d for population passage via APLIP in a model of displaced
harmonic oscillators with the same frequencies. We have chosen
a negative detuning,∆ ) -0.02 au, for the second potential,
and we have assumed thatΩeff ≈ Ω0. The results show that the
relation betweenΩ0 andd is only approximately linear. As we
will show in the next section, asd approaches zero, the APLIP
dynamics converges into the STIRAP dynamics, so thatêA does
not give the correct limit. Finally, the results also depart from
linearity for large values ofd. This can be expected since the
adiabatic parameter derived in our simple model depends
essentially on the adiabatic properties at the crossing between
the U1(x) and U3(x) potentials (that is, on the two-photon
absorption process). As the distance between the potentials
increases, the whole APLIP process is dominated by the motion
of the wave packet on each potential (that is, on the Raman
processes), so that the adiabatic parameter should be derived
in terms of specific adiabatic requirements imposed on the
Raman processes.26

Previously we have estimatedêA in terms of a Rabi frequency
obtained for threshold values of population transfer to the target
electronic state,Ω0(P3). The qualitative agreement ofêA with
the numerical results is poorer if we base the calculation on
thresholds for selective adiabatic population transfer to the target
vibrational state,Pf. In Figure 4 we observe thatΩ0(P3,V)0)
depends more sensitively thanΩ0(Pf) on the duration of the
pulses. For larger pulses,Ω0(P3,V)0) is closer toΩ0(P3) than
for shorter pulses. The proposed simple model, based on a
classical motion of a particle, cannot yield insight into the
adiabatic requirements for selectivity in APLIP. For the resonant
case (∆ ) 0) the qualitative agreement is also poorer, since the
model requires a detuning to explain the correct adiabatic
passage.

D. Quasi-Adiabatic Description. A more quantitative picture
of the APLIP process can be obtained by applying the rotation
matrixRs(t), which diagonalizes the STIRAP Hamiltonian (see
eq 3), to the APLIP Hamiltonian. By this procedure we analyze
APLIP in the natural representation of the STIRAP dynamics.
Assuming that the Rabi frequencies are not dependent on
position (the Franck-Condon approximation) we obtain the
Schrödinger equation

where

d
dx

|U3(x) - U1(x)| ) mω2d (12)

êA )
Ωeff

2p

4Ebarω
(13)

êA )
2Ωeff

2p

mω3d2
(14)

Ωeff(ê J P3) ∝ d (15)

ip
∂

∂t
ΦBQA(x,t) ) - p2

2m
∂

2

∂x2
IΦBQA(x,t) + UQA(x,t) -

iRs
-1(t)

∂

∂t
Rs(t)ΦB

QA(x,t) (16)

Controlling Non-Franck-Condon Transitions J. Phys. Chem. A, Vol. 107, No. 40, 20038267



with θ(t) ) arctan(Ω1(t)/Ω2(t)), the adiabatic mixing angle. In
eq 17 the diagonal elements are the quasi-adiabatic LIPs (QAPs)
that remain coupled becauseRs(t) is not exactly appropriate to
diagonalize the APLIP Hamiltonian. The initial quasi-adiabatic
wave packets are obtained byΦBQA(x,0) ) Rs

-1(0)ψB(x,0). By
application of a counterintuitive sequence, it can be seen that

so that fort ) 0, Φ0
QA(x,0)≈ ψ1(x,0). The initial quasi-adiabatic

wave packet lies inU0
QAP(x,t).28 The mechanism of adiabatic

passage in the quasi-adiabatic representation is based on the
dynamic changes inU0

QAP(x,t),

In Figure 9 we representU0
QAP(x,t) for the XAB case. The

projection of the QAP shows the path followed by the quasi-
adiabatic wave packet. The form ofU0

QAP(x,t) approximately
reproduces the electronic lever mechanism that allows the wave
packet passage, as introduced before. AlsoU2(x) does not
participate in the shaping ofU0

QAP(x,t), so thatΦ0
QA(x,t) does

not overlap with states of the intermediate potential.
In the quasi-adiabatic representation there are two sources

for couplings that move the wave packet away from the
minimum path inU0

QAP(x,t). The first one is the temporal
nonadiabatic term (last term from eq 16). The second one is
the “direct” coupling between the QAPs,

This term is a consequence of choosing a simpler representation
which does not diagonalize the APLIP Hamiltonian. It also
incorporates the spatially nonadiabatic couplings in eq 9. The
form of the coupling (eq 20) separates the temporal from the
spatial contributions, facilitating the evaluation of its effects on
the wave packet motion. It can be observed thatµ0(

QA(x,t) will
be small at the positions and times where the amplitude of
φ0

QA(x,t) is large during the passage. For instance, at initial and
final timesΩ1(t)Ω2(t) ≈ 0, while at intermediate times the wave
packet is near the avoided crossing regionxc, where
U1(xc) ≈ U3(xc), so that the coupling term,µ0(

QA(x,t), is small.

UQA ) 1
2(U1 sin2 θ + U3 cos2 θ + U2 + Ω0 x2(U1 - U3) sin(2θ)/2 U1sin2 θ + U3 cos2 θ - U2

x2(U1 - U3) sin(2θ)/2 2(U1 cos2 θ + U3 sin2 θ) x2(U1 - U3) sin(2θ)/2

U1sin2 θ + U3 cos2 θ - U2 x2(U1 - U3)sin(2θ)/2 U1sin2 θ + U3 cos2 θ + U2 - Ω0
) (17)

Figure 8. Dependence of the threshold of adiabatic passage in APLIP
with respect to the distance between the equilibrium separations of the
initial and target electronic states. As the distance between the nuclear
configurations increases, the amplitude of the pulses must increase
approximately linearly to ensure adiabatic passage. The results are
obtained for a model system of three displaced harmonic oscillators.

Figure 9. Structure of the quasi-adiabatic LIP,U0
QAP(x,t), that allows adiabatic passage via APLIP according to the quasi-adiabatic description.

Φ0
QA(x,t) ) cosθ(t)ψ1(x,t) - sin θ(t)ψ3(x,t) (18)

U0
QAP(x,t) ) U1(x) cos2 θ(t) + U3(x) sin2 θ(t) )

1
Ω0(t)

(Ω2(t)U1(x) - Ω1(t)U3(x)) (19)

µ0(
QA(x,t) )

x2
4

sin(2θ)(U1(x) - U3(x)) )

x2
2

(U1(x) - U3(x))
Ω1(t)Ω2(t)

Ω0
2(t)

(20)
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If both potentials have approximately the same shape and
equilibrium configuration, thenµ0(

QA(x,t) ) 0 andU0
QAP(x,t)

) U0
LIP(x,t); that is, the quasi-adiabatic potential is indeed the

light-induced potential. In this limit, of course,U0
LIP(x,t) ) U1(x)

) U3(x), so that there are no dynamics (displacements) in the
spatial coordinate. The STIRAP and the APLIP method
converge. This means that adiabatic passage happens for all
pulse amplitudesE0 larger than the adiabatic threshold for
STIRAP, given byêS (eq 7), for resonant conditions. The results
for this hypothetical molecular scenario are shown in Figure
10, where we use the same harmonic potential curve for the
ground and final target electronic state.

In general, if the couplings are weak, we can assume that
there are no transitions between different QAPs, so that the wave
packet follows the equation

The kinetic and potential operators can distort the shape of
Φ0

QA(x,t), but they do not change the different contributions of
the electronic potentials provided by eq 18. Therefore, the
electronic populations,P1(t) ) Ω2

2(t)/Ω0
2(t) andP3(t) ) Ω1

2(t)/
Ω0

2(t), follow the same dynamical behavior as the vibrational
state populations in STIRAP, a result observed in Figure 5.

Finally, we discuss the role of the detuning in the quasi-
adiabatic representation. According to our model, the effect of
the detuning is incorporated inU2(x), which is the energy shifted
intermediate potential. SinceU2(x) does not appear inU0

QAP(x,t)
or in µ0(

QA (x,t), it would seem that the detuning does not play
any role in the APLIP process, which is not consistent with the
numerical results.18,20 The schematic picture of Figure 11
explains how the effects of the detuning can be incorporated in

the quasi-adiabatic description. For blue detuning, the energy
of U0

QAP(x,t) (or U0
LIP(x,t)) is above the energy ofU-

QAP(x,t)
and below the energy ofU+

QAP(x,t). As the amplitude of the
field increases, by Stark shift these QAPs (or LIPs) separate
from each other due to the(Ω0(t) term in the equations (see
eq 17). Then,|U0

QAP(x,t) - U(
QAP(x,t)| . µ0(

QA(x,t), and the
effect of the couplings can be neglected. The dynamics can be
followed solely by eq 21. However, when the frequencies are
detuned to the red ofV2(x), at initial times the energy of
U0

QAP(x,t) is also below the energy ofU-
QAP(x,t). When the

amplitudes of the fields increase, by Stark shiftU-
QAP(x,t) will

cross U0
QAP(x,t), so that the adiabatic couplings cannot be

neglected even ifµ0(
QA(x,t) is as small as before. Now eq 21

does not provide an accurate description of the dynamics. The
true LIP will actually look likeU0

QAP(x,t) at initial and final
times (before the nonadiabatic crossing) and likeU-

QAP(x,t) at
intermediate times. Moreover, during the crossings, the coupling
induces spatial distortions in the wave packet.

VI. Final Remarks

We have studied the control of vibrationally selective highly
non-Franck-Condon electronic transitions by ultrafast laser
pulses, as a function of the geometry of the electronic states
and the intensity and duration of the pulses. We have explored
the efficiency and robustness of an adiabatic passage scheme
on the basis of a particular class of time delay control using a
counterintuitive sequence of two laser pulses.

For moderate intensities, the scheme is generally named
STIRAP and makes use of a resonant transition to an intermedi-
ate state that works as a “wave function bridge” between the
initial and target states. The efficiency of the scheme can be
estimated by a simple adiabatic condition, given by eq 1.
However, the adiabatic condition is no longer useful in the strong
intensity regime, where STIRAP dynamics is no longer selective
or efficient for population transfer. For strong pulses the two-
photon electronic transition can be controlled in a very robust
way by another scheme, named APLIP, with many similar
features. In previous contributions18,20-22 we have studied the
dynamics of APLIP and showed its performance using frequency
detuned transitions and both counterintuitive and intuitive
sequences. Here we propose a very simple model for APLIP

Figure 10. Population transfer between an initial and target electronic
potentials of identical shape as a function of the pulse amplitudesE0.
The transfer is selective and robust at a threshold corresponding to the
adiabatic requirements of STIRAP and is not limited asE0 increases,
so that the STIRAP and APLIP schemes converge. The final target
populationP3,V)0 is almost unity for allE0, and the time-averaged
population in the intermediate electronic state〈P2〉 drops linearly with
E0. The solid lines represent the results for resonant transfer with a
vibrational level in the intermediate electronic state, while the dotted-
line curves represent the results using a blue detuning of∆ ) -0.02
au. The same results are obtained with red detuning. The threshold of
population transfer depend with detuning in a manner expected for
nonresonant STIRAP. Otherwise the same results are obtained for
different detuning asE0 increases.

ip
∂

∂t
Φ0

QA(x,t) ) [- p2

2m
∂

2

∂x2
+ U0

QAP(x,t)] Φ0
QA(x,t) (21)

Figure 11. Schematic description of the role of detuning in STIRAP
according to the quasi-adiabatic representation. AlthoughU0

QAP does
not depend on detuning, for blue detuningU0

QAP is always far from
the other LIPs when the couplings,µ0(

QA, are important, so that the
population is solely transferred inU0

QAP. However, for red detuning
U-

QAP crosses withU0
QAP both at the beginning and end of the process,

therefore inducing nonadiabatic population transfer toU-
QAP.
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and we concentrate on the relations between both methods in
terms of their adiabatic properties, following the dynamics for
different electronic state geometries, time durations, and increas-
ing pulse intensities. Whereas adiabatic following in STIRAP
is based on the properties of a single adiabatic state and requires
fine control on the Hamiltonian in the adiabatic representation,
the APLIP dynamics is based on shaping the electronic potential
in the adiabatic representation, requiring only a more “crude”
or less detailed control.

By numerical simulations for two different vibronic transitions
in Na2 we have shown the areas where the STIRAP and APLIP
schemes are efficient and selective. The range of efficiency of
the STIRAP method is clearly revealed in our study and possible
limitations are outlined. However, our results do not show the
limitations in APLIP. These appear when we evaluate the
validity of the model used in our calculations, which is based
on a Hamiltonian with three-electronic potentials in the rotating
wave approximation. For very strong laser fields this model does
not include highly nonlinear phenomena observed in the
dynamics, such as competing multiphoton transitions and
autoionization. For some electronic geometries the threshold for
population transfer in APLIP occurs already at the onset where
the model breaks. Therefore, the utility of the APLIP scheme
for more general systems will rely on our ability to extend the
control in the modulation of the potentials forn-electronic states
beyond the rotating wave approximation. The use of frequency
chirped pulses assisted by optimal control techniques may
become an important additional tool in the control of the
dynamics. Work along these lines is in prospect.
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