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Vibrationally selective population transfer in electronic transitions involving small Fra@ckdon factors

is studied by means of two-photon excitation with pulse sequences applied in counterintutive order. Depending
on the intensity of the pulses, two schemes allow ultrafast adiabatic passage. Both schemes, called STIRAP
and APLIP, are analyzed as a function of the geometry of the electronic states and of the time duration and
intensity of the pulses that drive the transitions. Although both schemes imply adiabatic following, the APLIP
scheme requires pulses of considerably larger intensity than STIRAP, hence operating in a strong adiabatic
regime. Simple adiabatic criteria for high-quality transfer are proposed, and analytic proofs are provided that
show under which conditions STIRAP and APLIP converge. The results of this paper are illustrated with
numerical simulations for two different electronic transitions in the Malecule.

I. Introduction initially proposed for population transfer by stimulated Raman
adiabatic passage (STIRAP) in 3-level systéhdias been
experimentally applied to atomic and Raman transitions using
continuous wave (CW) lasers and nanosecond ptlsese we
address the problems involved with its implementation for
selective non-FranckCondon electronic transitions in the Na
molecule with pico- or subpicosecond laser pulses. We analyze
the properties of the population transfer as a function of the
‘geometrical features of the electronic potentials, as well as the
time duration and intensity of the pulses that drive the excitation.

There are other possible ways to address the problem of
selective population transfer in electronic transitions. A very
general methodology uses optimal cortfabr learning algo-
rithms!© to find the optimal pulses that drive the dynamics to
the desired target state. One difficulty with the methodology of
optimal control is related with the physical interpretation of the
mechanisms underlying the dynamics, which are often obscure.
éAIso, the optimal dynamics are usually very sensitive with
respect to the final time chosen to maximize the yield of the
desired selective transition, making the results more difficult
to interpret and generalize when considering the properties of
the population transfer as a function of the geometry of the
system and the time duration and intensity of the pulses.
éAIthough there are prospects for devising feasible schemes to

obtain mechanistic information easily applicable to optimal
control desigri! for the type of analysis explored in this paper,
the approach based on schemes designed a priori as the

" Part of the special issue “A. C. Albrecht Memorial Issue”. counterintui;ive pulse sequence here proposed is usuall_y simpler.
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State selective preparation of molecules in excited states is
often a fundamental step for subsequent study of unimolecular
or bimolecular reactions, with applications in photochemistry,
spectroscopy, and laser technoldgWe consider electronic
transitions that lead to no vibrational excitation in the bond
coordinate. Since usually the equilibrium configurations are
more relaxed in excited electronic states than in the ground state
the laser pulses must be tailored in specific ways in order to
avoid the direct dipole-preferred Frane€ondon or vertical
transition that leads to vibrational excitation. This is what we
refer herein as controlling non-FraneKondon transitions.

Several schemes and even general methodologies have bee
proposed to find the best pulses that drive the vibrational
population to specific quantum statesln this paper we study
a class of schemes that involve robust population transfer by
adiabatic passadeln these schemes, one usually proceeds by
designing frequency chirped pulses or different pulse sequence
so that the initial ¢i(X)) and the targei(x)) states are connected
via a single eigenstate of the Hamiltonian in the adiabatic
representation, which is called the transfer state.

We consider one general solution on the basis of two pulses
that act on the system in counterintuitive orfiet That is, the
pulse that drives the transition between a selected intermediat
state,¢p(X), and the target statgq(x), precedes the pulse that
drives the transition betweegi(x) and ¢n(X). The method,
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models, which are proposed for the dynamics of simple quantum
systems? In this case, the approach is valuable when the
molecular Hamiltonian of the system of interest accepts the
simplifying assumptions of the chosen model, that is, when a
reduced dimensional description of the Hamiltonian provides
trustful results: Therefore, a major concern is the implementa-

tion of the model on a realistic scenario.

A general advantage of adiabatic methods over other coherent
excitations is that the adiabatic schemes assess greater stability
on the dynamics relying in the control of very few parameters
with ample margins. However, this economy in the variables
to control is at the expense of energy in the field, since a typical
condition for adiabatic following requires the effective pulse
area to be much larger than’

Figure 1. Na potentials considered for population transfer from the
initial to two possible target wave functions, defining the so-called XAB
and XAC systems. Depending on the final state, the proposed transition

Qo7 > 7 @ implies a larger or smaller displacement of vibrational population along
the bond coordinate, so that the overall two-photon transition can be
(which can sometimes be as much as 100), wifgsgis the almost Franck Condon type (XAC) or highly non-FranekCondon

effective Rabi frequency or radiation coupling term of the type (XAB).
process and is the time scale or width of the pulses. This is to
be compared with a minimum of.sr = & required for
population inversion according to the Rabi formula, which A
underlies many other possible coherent excitation schemes. PoPulation transfer. o _ _

In two-photon electronic transitions, the effective Rabi In th!s paper we are .pr|mar|ly co.ncerned with analyglng
frequency depends on the amplitude of the laser times the Properties of the population transfer in APLIP on the basis of
Franck-Condon amplitudes between the chosen intermediate € Simplest Hamiltonian model, as a function of the geometry,
quantum state(x) and bothgi(x) and ¢(X). In STIRAP, the time du_rat|or_1, and intensity of the pulses, and comparing th_ese
wave functiongs(x), which we call the wave function bridge, properties with those of the STIRAP method. The organization

must be orthogonal to the adiabatic transfer state. The adiabatic! this paper is the following. In section 2 we introduce the
passage relies on a fine engineering of the Hamiltonian in the Molecular model of the Nanolecule and the numerical methods
adiabatic representation, which usually requires isolafis(g) employed to solve the dynamics in that system. In particular

from all other vibrational levels. For some non-Fran€kondon we propose the. opt|m|;§t|on of'two selgctlve non-Franck
electronic transitions it is not always possible to find a proper Condon electronic transitions to different final electronic states.

intermediate state that satisfies these requirements using ulN S€ction 3 we consider an implementation of STIRAP i Na
trashort laser pulses. For instance, following eq 1, for small N View of the basic properties of the STIRAP Hamiltonian and

adiabatic following requires larg€e. For small Franck we study the subsequent dynamics of the system. In section 4

Condon factors the laser amplitudes must be very large, inducing"V€ Show how the population transfer depends on the amplitude
other preferred vibronic transitions and breaking the validity 2nd duration of the pulses. In particular it is shown where the
of the 3-level Hamiltonian description required for STIRAP. different regimes 9f ST,IRAP and APLIP work. In section 5 we
In the STIRAP frame, the adiabaticity and selectivity cannot Study the dynamics via APLIP and we analyze the role of
be restored by further increasing the amplitudes of the pulses.980Metry. intensity, and duration of the field and show when
As a consequence of the timenergy uncertainty principle, in the STIRAP and APLIP dynamics converge. In section 6 are
this regime a wave packet can be formed and subsequentlythe final remarks.
evolve, much in the same way as (or actually complementary .
to) the way the time uncertainty of femtosecond pulses can be”' Molecular Model and Numerical Procedure
hold responsible for inducing the dynamics in ultrafast processes. We choose the Nedimer as our molecular candidate to test
Therefore, a completely new model must be used to first the previous adiabatic schemes, since the electronic curves of
understand and then control the dynamics in these conditions.many excited states are well-known and the energetics of the
Several interesting phenomena have been predicted andsystem is well suited for experimental implementation. In fact,
observed by using strong ultrafast laser pulddhe underlying Na, was the first molecule where STIRAP was demonstréted.
model to understand processes such as bond softérang In Figure 1 we show the electronic curves that participate in
stabilizatiod® is based on the structure of the electronic the model. Our initial state is the zeroth vibrational level in the
potentials in the adiabatic representation, so-called light-inducedground electronic state, that we call (X,0), with wave function
potentials (LIPs}2 Recently, counterintuitive pulse sequences ¢oX(x). The goal is to invert the population to the zeroth
have been proposed to shape dynamically the structure of thevibrational level of either the excited electronic state B,
LIPs so as to allow the population transfer of the vibrational which we name ag0®(x) or (B,0), or the excited electronic

the analysis of the adiabatic requirements needs further elucida-
tion, since eq 1 no longer sets sufficient conditions for selective

wave function between different electronic stafeAdiabatic state C'Z4, which we namepo©(x) or (C,0).
passage by light-induced potentials (APLIP) has been studied In both excited configurations the bond is more relaxed than
and generalized for different scenarios and purpé%&s.in in the ground state, and therefore, the transitions that we are

comparison with STIRAP, the APLIP scheme can be thought considering are highly non-FranelCondon (see Figure 1).

of as an adiabatic scheme that requires only crude engineeringHowever, whilegg*(x) still overlaps with¢o“(x), its overlap

of the Hamiltonian. Increasing the pulses amplitude introduces with ¢oB(x) is negligible. The results of population transfer
more energy in the system, so that the intermediate electronicdepending on the target state selected show the different
potential can be considered as a pool of wave function bridges sensitivity of STIRAP and APLIP with respect to the geometry
that the system uses to go frap(x) to ¢¢(x). In this situation of the excited states.
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The numerical results of the paper are obtained by solving wheref(t) = arctanQ1(t)/Qx(t)) is the adiabatic mixing angle.
the Schidinger equation driven by two control fields(t) and The transfer state responsible for the adiabatic passage is the
ex(t), in the rotating wave approximation (RWA) and in the dressed state (eigenstate of the adiabatic Hamiltonian) of zero
coordinate representation, including only 3 potential curves for eigenvalue:
each calculation (the ground, the intermediate electronic po-

tential A X, and the chosen final electronic state): Dy(xt) = 1 (Q,0),(X) — Q(Hr(X) (5)
Q) '
9 wl(xvt) hz 82
A (%) [ = |- 5= —=7+ HereQo(t) = /Q,()*+Q,(t)* serves as a normalization factor.
ot 2m gy ! 2
Pa(X.1) d By the choice of a counterintuitive pulse sequence (such that
00 hez o Wi S0 40 sl mes i) = 240 e e
—hQ ()2 Uy(x) —hQ,()/2 ][y, | (2) ' '

late times and, therefore, as long as the dynamic evolution is
0 —hQ, ()2 Us(X) Pa(x.t) adiabatic, serves its purpose as a transfer state. In its simpler

form, the adiabaticity can be assessid
Here 7'is the unity matrix andJj(x) are the energy shifted

potentials: U1(X) = Vx(X), Ua(X) = Va(X) — hw1, Uz(X) = Va(X) Qo>1 (6)

— A(w1 + wy) or Uz(X) = Ve(X) — A(w1 + wy), with w; andw

the laser carrier frequencies. To simplify the analysis regarding whereo is the time delay or the time width of the pulses. The
how the geometry of the potentials affects the results, we assumeS2q here can be set as its value with maximum overlap of the
the Franck-Condon approximation and, without loss of gen- pulses, although it is usually evaluated by introducing the peak
erality, writeu12(X) = u23(X) = 1. In the coordinate representa- amplitudes for both pulses, as we will do in this paper. We can
tion the Rabi frequencies are then exactly the laser amplitudesdefine a parameter

in frequency unitsQi(t) = e1(t)/h and Qa(t) = ex(t)/h, where,

following the RWA, the pulses are represented only by the Es= Q0 (7

envelope function. We choose Gaussian-shaped pulses for all ) o )
the results presented in the papeit) = :° exp(—(t + 7)% that measures the adiabaticity of the dynamics. In STIRAP, the

20?) andex(t) = e10 exp(—(t F 1)2/20?), where 2 is the time adiabatic parameter is the averaged pulse area. The identifying
delay between the pulses. Equation 2 is solved by a standardf€ature of adiabatic passage via STIRAP is that the population
split-operator propagator combined with fast Fourier transform in the wave function bridge is zero during the entire process,

techniques. More details can be found in ref 23. sincedo(x,f) is orthogonal topp(x).
B. Molecular Geometry Considerations: Importance of
1. Stirap in Molecular Systems the Wave Function Bridge. In this section we consider the

practical problems of implementing and optimizing the STIRAP

A. Population Inversion in Molecular Systems via ; : :
. ; ; scheme in molecular systems, namely in the, Nmer.
STIRAP. The STIRAP scheme is a method of adiabatic passage g|o\ing the nomenclature and procedure of section 2, the

that con_trols the pop_ulat_i(_)n transfer via an intermediate level ; .o «iote of the STIRAP systeng;(x), is now ¢o¥(x). We
by applying a counterintuitive pulse sequence, such that the laser g sider two different final stategy(x) = ¢oB(X) or ¢po°(X),
that couples the intermediaig,(x)) with thg .tqrget statazﬁ((x.)), corresponding to two different STIRAP systems, the XAB
e2(1), precedeshe laser that couples the initial stai@(k)) with gy stem and the XAC system. The first problem consists of
¢o(x), €x(t). To implement the STIRAP scheme in any realistic gi4ing the best possible wave function bridge in the intermedi-

system, one peeds to find a good_interr_nediate state, such thal. alectronic potentia, = ¢{(x), such that bothui, and s
its wave function works as an effective bridge between the initial ;.o 5o large as possible. In the FranGlondon approximation

and final states. The efficiency of the method relies on the  _ = xa _ 4 x A — o AB — LA B

validity of the model, whose general Hamiltonian, implying the /Zébr Taqpl?al top?*% (i) l%&-fsg)?zgc%)bfm_dggendingb]og()twg t(;)rget
rotating wave approximation (RWA) and using resonant pulses, g51e selecte(]j). In Figijre 2 we show the absolute value of the
is formulated a5 Franck-Condon amplitudes as a function of the intermediate
state vibrational quantum numigeAlso shown are the Franek

A 0 -0 0 Condon amplitudes related to the overlap betwggix) and
Hstirap = ) - o —€2,(1) ©) adjacent states on the grourd’{(x)) and final excited potentials
0 —Q,(t) 0 (¢1%(¥) and ¢1%(x)).

First consider Figure 2a. Due to the geometry of the three
The coupling elements are defined in terms of the Rabi electronic potentials and a general reflection princifléhe
frequenciesQi(t) = ex(ui/fi and Qa(t) = ex(t)unih, where repulsive part of the/a(x) curve is a mapping in the energy
uip andups are the dipole moments between the “bridge” state space of the spatial coordinate dependence of the vibrational
and the initial and final states, respectively. wave functions of the ground electronic state, whereas the
The physical mechanism of STIRAP is easily explained by attractive part oVa(x) serves as a mapping of the vibrational
following the dynamics in the adiabatic representation, which wave functions of B1,. Since the role of the intermediate
is obtained by diagonalizing the Hamiltonian via the rotation potential with respect to the ground and excited states is quite

matrix symmetrical, the mapping of the ground and excited wave
functions inVa(x) greatly overlap$® that is, many intermediate
sin@ /2 cosf sin@ states can serve the purpose of a wave function bridge. The
A =— |1 0 -1 (4) best compromise for having large Frarg®ondon amplitudes
oS V2 in both transitions is obtained choosipg 10, ¢10°(x). Then,

cosf  —v/2sing cost p1“ = 0.306 and;o *B = 0.315. The choice of a good wave
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Figure 2. Absolute value of the FranekCondon amplitudes for transitions involving different vibrational states of the intermediate electronic
potential AX, and a few vibrational states of the initial and target electronic potential. In the XAB system, the +F@ormtton amplitudes reflect

the shape of the wave functions in theXand BIIg potentials by a reflection principle. However, in the XAC system the shape of the electronic
potential CXq is very similar to AZ,, so that the FranckCondon amplitudes involving vibrational wave functions of A and C are approximately
Dirac delta functions. For the overall two photon transition we must select a “good wave function bridge”, that is, a single intermediate state that
maximizes the FranekCondon amplitudes for both transitions, between the initial state and the intermediate state, and between the intermediate
state and the target state. In the XAB system this is achieved with the encircled state (A,10). In the XAC system the best wave function bridge
corresponds to state (A,2) but involves quite smaller Frai@bndon amplitudes than in the previous system.

function bridge is decisive in reducing the amplitudes of breaking the population locking condition and leading to Rabi
nonresonant paths that break the adiabaticity and selectivity ofoscillations of population to and from the wave function

STIRAP?? bridge??

In Figure 2b we show the absolute value of the Franck In Figure 3b-d we sh_ow the result_s ofimplementing STIRAP
Condon amplitudes corresponding to the XAC system. The in the XAC system, using pulses with the same width and time
geometry of the potentialc(X) is very similar to that of/a(x). delay as before. In case (b) the amplitude of the pulses is chosen

Therefore, transitions between both electronic states are intrinsi-SO that the effective pulse area is also Zhis case should yield

quantum (A,2) — (C, v). The mappings obo*(x) and ¢eC(x) model were adequate to describe the dynamics of the system.

on Vs,(x) almost do not overlap, and it is difficult to find a However, the population dynamics follows a completely dif-

good wave function bridge. The best compromise is obtained ferent b(_ehavior. First, the_re _is population passage to Fhe
forj = 2. Thenpo A = 0.123 andh, ¢* = 0.103. The Franck intermediate state (A,3), which is not the selected wave function

bridge. Second, almost no population is transferred to the target

Condon amplitudes are 3 times smaller than in the previous wave function. Finally, there is some excitation of several levels
case. More importantly, the FranelCondon amplitudes of . - Finaty,
in every electronic state.

unwanted adjacent transitions, although nonresonant, are larger o . . ) )
and therefore make their related transitions geometrically more 1 he origin of the failure in the adiabatic passage stems from
the poor FranckCondon factors associated with the best-

favorable than the transitions involved in the STIRAP path. . . ) .
P available wave function bridge, (A,3). Since the Fran€london

,C' Results of Population Transfer vi.a STlRAP in Na. In amplitudes are 3 times smaller than those for the XAC system
Figure 3a we show the population histories for the STIRAP

dynamics in the XAB system. We use two pulses of Gaussian
shape with time widtho = 1.5 ps and maximum amplitudes
€% = €% =5 x 107* au, corresponding to a peak intensity of
9 GW/cn?. The time delay between the pulses is=2 2.5 ps.

For these parameters we can estimate an adiabatic paramet

andés = o\/ (€2°Po 2 M)+ (€., o), to conserve the effective
pulse area the amplitude of the pulses must be approximately 3
times larger than before. This amplitude enables nonresonant
paths that, although not energetically favored, are geometrically
rreferred. The main source of instability in the STIRAP scheme
is associated with changes in the sign of the Frar@&ndon

&s = O\/(Elopo,10XA)2+(€20p10,0AB)2 ~12.7, which corresponds  amplitudes of adjacent transitions. Indeed, in the limit of
approximately with an effective pulse area af 4ull population  degenerate intermediate states with dipole moments of opposite
passage to (B,0) takes place with minor temporary excitation sign, it is not possible to prepare the adiabatic dark sba(,t)

of the intermediate state. This result is in perfect agreement with that drives the population in STIRAP.

the theory of STIRAP and indication that the 3-level Hamilto- There are no good STIRAP solutions for the XAC system
nian model can accurately describe the dynamics of the systemysing pulses with 1.5 ps time widths. In Figure 3c we show the
in this regime. Reasonably good adiabatic population transfer best possible result. This corresponds with using pulses of
is even possible with femtosecond pulses, with 600 fs. Only approximately the same intensity as in the XAB system, which
for larger fields the Rabi frequency of competing processes canin our case implies an effective area of onlys, Blearly below
exceed the energy difference between (A,11) and (A,10), the threshold of adiabatic passage. For this area, the dynamics
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Figure 3. Population histories of the most important states participating in the dynamics of a STIRAP process for the XAB system (a) and the
XAC system (b-d). In the XAB system, perfect STIRAP behavior is possible from (X,0) to (B,0) via the (A,10) state, using pulses with approximate
pulse ared&s ~ 4 and 1.5 ps time widths. In the XAC system, the Fran€london amplitudes are smaller even for the best wave function bridge.
Therefore, to havés ~ 4z (Figure 2b) the amplitudes of the pulses must be larger, enabling other transitions. The adiabatic transfer state is no
longer orthogonal to the intermediate state, which is highly populated, stopping the passage to the target state. The 3-level Hamiltonian provides
only a valid representation of the dynamics for smaller pulse areasidikel.5r in Figure 2c, before the threshold of adiabatic passage. Increasing

the pulse area, likés ~ 7.57 in Figure 2d does not restore the adiabaticity requirements.

of the 3-level Hamiltonian model reproduce well the dynamics for different time scales and final electronic potentials. Figure
in Na; (which are obtained solving eq 2). This fact indicates 4a,c,e shows the results for the XAB system using Gaussian
that the dynamics is selective, although only 20% of population pulses with time widther = 6, 1.5, and 0.6 ps, respectively,

is now transferred to the target state and the intermediate statavhile Figure 4b,d,f shows the results for the XAC system using
is populated. The adiabaticity cannot be improved by increasing the same set of pulses as before. The properties of population
the amplitudes of the fields, as Figure 3b,d shows. In case (d)transfer are monitored by following the population in the target
the effective area corresponds to 7.5he population trans-  vibrational state at final time, the electronic population in the
ferred to the target state increases with respect to tharda, target electronic state at final time (so that proximity of both
but the dynamics is clearly not selective nor robust under curves measures the selectivity of the method), and the time-
changes in the pulse parameters; i.e., the process is no longeaveraged population in the intermediate electronic st@te]
adiabatic. The STIRAP dynamics can only be observed by using= f{dt'|@a(x.t')[pa(x,t")[’/o. Also shown are results of popu-
much longer laser pulses, with time widths of the order of 30 |ation transfer when the process is performed out of resonance;

ps. that is, when the lasers are tuned 0.014-28100 cnt?') above
) ) ) ) ) the resonance with the intermediate potential, all other param-
IV. From the Adiabatic to the Strong-Adiabatic Regime eters remaining the same. These conditions will be revealed to

STIRAP is a very general and powerful scheme, and we have be particularly important when we analyze population passage
seen that it can be implemented in molecular systems even invia APLIP in the strong-adiabatic regime.
the subpicosecond regime. Physical bounds can be approxi- Let us start analyzing the results for larger time widts<
mately framed by the conditiond > 10 (the exact number 6 ps,r = 10 ps) in the XAB system. Inspection of the results
depending upon the system and pulse shape)@ac w,, of Figure 4a show the expected behavior of STIRAP for lower
where we identifyw, as the vibrational quantum in any of the  field amplitudes. Once the adiabatic requirement is fulfilled,
potentials implied, although, as we have seen, the energythe method is highly efficient and selective and its signature is
separation of levels itJz(x) is the main concern. Beyond that  clearly noticed as the drop ifPAlreveals a dark resonance
limit the simple assumptions of the model break. Not only do process (no fluorescence). For larger valueSiithe population
other states become accessible, thus reducing the selectivity ofn the intermediate state is no longer locked and the population
the scheme, but the population no longer flows via a single does not reach the final electronic state. However, as the field
adiabatic dark state. amplitude is further increased, the STIRAP scheme seems to

However, recently it has been observed that adiabatic passaggjain some efficiency, although now the population transfer is
can be recovered using much more intense pulses, in what wenot selective and is very sensitive to the exact valugpothat
call a strong-adiabatic regime. The mechanism of population js the method is no longer adiabatic. Finally for even stronger
transfer is different and the method that exploits and generalizesfig|gs, the method recovers its previous efficiency and selectiv-
its properties has been named APLIP. We analyze its featuresity_ Despite using strong fields tuned in resonance with

in the_ following sectior)s_. Figure 4 sgmmarizes all the resu_lts transitions to intermediate states, the average populatidr(i
of efficiency and selectivity of population passage as a function 5154 decreases as if it were locked. Moreover the results can be

of the field amplitude (parametrized g = «/(610)24‘(620)2) improved by tuning both lasers off resonance with respect to
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Figure 4. Efficiency and selectivity of the two-photon transfer as a function of the effective field ampHuyder different pulse time widths and

different target states. The curve with open circles represents the final population on the target electronic state for the resonant STIRAP-type
transition, and the light gray shaded curve gives the population on the target vibrational state (selective transition) at final times. Thiedede-ave
population on the intermediate electronic stél&,[] is given by the dotdashed curve, whose logarithmic scale is represented at the right side of

the plot. At the top row are shown the results for the XAB system, while at the bottom row are the results for the XAC system. From left to right
the time widths of the pulses changeas: 0.6, 1.5, and 6 ps. For the XAB system STIRAP is possible in all the time widths tested, while only
some STIRAP transfer (yield 6£0.8) is possible for the larger time widths in the XAC system. Nearly in all cases the limit for adiabatic passage
via STIRAP is around, ~ 1072 au. On the other hand, APLIP is always possible in the XAC system but fails for very short time widths in the
XAB system. Also the threshold of adiabatic passage via APLIP starts at IBggerthe XAB system than in the XAC system. Therefore, the
transition from STIRAP to APLIP requires a smaller increase in pulse area in the XAC system. Except for very short pulse time widths, the
performance in APLIP can be improved by detuning the lasers with respect to any intermediate state. The solid circles and the dark gray shaded
curves provide respectively the overall population in the target electronic state and in the target vibrational level (selective transgitimext lat

for detuningA = 0.014 au to the blue of the resonance with the intermediate level. The dashed line regigents

Va(X). This is the regime of strong-adiabatic transfer, where the system. The difference between STIRAP and APLIP is smaller
population transfer follows the APLIP properties. for this geometry of the potentials.

The same qualitative features in the population transfer are  Figure 4c-f shows how the threshold for population transfer
observed in Figure 4b for the XAC system. The STIRAP changes for both STIRAP and APLIP as the time width of the
passage is not as perfect as in the previous case, and a maximurpulses (and therefore the time scale of the transfer) is reduced.
of 80% vyield is obtained. The average population in the In STIRAP, according to eq 7, a decrease in time leads to a
intermediate state is not so small, showing that the dark linear increase 2o and therefore irEy. For the XAB system
resonance is not perfect. This is because the Fra@dndon even with subpicosecond pulses= 600 fs) adiabatic passage
factors for the best wave function bridge found are clearly via STIRAP yields almost 85%. The best result is obtained
smaller than those for the XAB system, so that stronger pulsesbefore the threshold of full adiabatic passage, so that the
are required to obtain essentially the same pulse area as beforegpopulation is not perfectly locked in the wave function bridge.
As in the discussion of the previous section, before reaching But for larger intensities, destructive interference with parallel
the threshold for successful population transfer, the Rabi paths destroys the adiabatic passage. In the XAC system of
frequency of the nearest off-resonant path becomes larger tharcourse, STIRAP is not possible for shorter pulses. On the other
the detuning, so that both paths interfere and destroy the darkhand, the threshold for adiabatic passage via APLIP is almost
resonance. For higher pulse intensities, in the strong-adiabaticindependent of the time scale of the process, at least if the pulses
regime, the population passage is however perfect, since is notare long enough so that the dynamics can still be considered
affected by fine details in the adiabatic transfer state. On the adiabatic from the kinetic point of view. The APLIP dynamics
contrary, although the FranelCondon factors are smaller (at can be achieved with subpicosecond pulses, especially in the
least for the intermediate state that is on resonance), theXAC system. The dependence of APLIP and STIRAP with
threshold of APLIP appears at lower amplitudes than in the XAB respect to the geometry of the potentials is thus very different.
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V. Population Inversion in Molecular Systems via APLIP

A. Population Inversion in Molecular Systems via APLIP. X.0) (B,0)
To analyze features of the APLIP dynamics, Figure 5 shows
the population histories for both the XAB and XAC systems,
using pulses witlo = 1.5 ps,t = 2.5 ps, andgp = 0.1 au. The
frequencies are detuned to the blue of the resonance with the
intermediate state by 0.014 au. Now the Rabi frequencies for
many different paths greatly exceed the energy difference from
the resonance, so that many vibrational levels of the ground
and final electronic potentials are excited. However, the overall
dynamic picture remains very simple. In Figure 5a we observe
the characteristic pattern of the APLIP dynamics. First, the
population is mainly excited to high vibrational levels in the
ground potential by means of Raman Stokes processes (although
nonselective two-photon absorption is also present); this is
rapidly followed by two-photon absorption from these levels
to highly excited vibrational levels of the final potential; finally,
by selective two-photon deexcitation (at some point similar to
Raman anti-Stokes processes) all the population is driven to ) ) 0 .
the target state, (B,0). time ()
Using exactly the same laser parameters we observe quali- o . L
tatively similar results for both systems. The transient excitation F'9ure 5. Population histories of the most important states participating

. . . . . in the dynamics of an APLIP process for the XAB system (a) and the
of highly excited vibrational levels in the ground and target XAC system (b). In both cases the pulse parameters are the same.

electronic potentials is smaller for the XAC system. The pgpulation transfer via APLIP requires substantial vibrational excitation
effective time required to complete the population transfer is in the ground and target electronic states at intermediate times, although
also smaller in this case. In the next section we will explain the AX, electronic state is barely populated. This transient excitation
this feature on the basis the properties of the adiabatic passagés larger in the XAB system than in the XAC system.

via APLIP. In general, the APLIP dynamics is clearly less
sensitive than STIRAP in regard to the geometry of the
potentials. Similar results are also found using shorter or longer
pulse time widths, as Figure 4 shows. Therefore, the adiabatic
threshold of the APLIP dynamics is also weakly dependent on
the pulse duration.

B. APLIP Mechanism. The simplest explanation of the
physical mechanism of APLIP is based on the concept of light-
induced potentials (LIPs). The basic Hamiltonian required to
understand the APLIP dynamics includes three electronic
potentials, as in eq 2,

2

(Xall v / (Ball v)
/

population

population

ta

motion of the wave packet, transferring population among
different LIPs and changing the shape of the wave packet. These
are the first and the last terms in the right-hand side (RHS) of
eq 9. Usually, the first term is referred to as the spatially
nonadiabatic term, and the last one, as the temporally nonadia-
batic term?° For a 3-electronic state system the LIPs are labeled
for decreasing order of energy &5.(xt), Uo(xt), U_(x,t)}.
Both 7Z5(x,t) and Z4'P(x,t) have analytical expressions, but their
forms are too complicated to facilitate understanding of the
process.

To gain insight into the mechanism of APLIP, we show in
Figure 6 a pictorial sketch of how the LIPs look as the pulses

Tlpprip = — 13_2‘7'_;_ vary in time. Notice thqt the pot.e_ntials here are shifted by the
2m gy energy of the photons, in the spirit of the RWW,(X) = Vi(X),
Ul(X) —th(t)/Z 0 Uz(X) = Vo(X) — hwy, andUsz(X) = V3(X) — h(wl + wy).
—hQ, ()2 UyX) —hQ, /2| (8) The initial wave function is inJy(x), which, according to

Figure 6, correlates with the left well &f-'P(x,t). The overall
APLIP process consists of moving this wave function to the
right well, where it correlates withls(x). Therefore, the physical
mechanism of the adiabatic passage requires the elimination of
the internal barrierEy,, that separates both wells iy-P(x,t),

at a certain time. The scheme of Figure 6 shows how this occurs
using a counterintuitive sequence of pulses blue-detuned with
respect tovy(x). At time t; the amplitude of the second pulse,
(1), is large, strongly couplingy»(x) with Us(x). By dynamic
Stark shift the energy difference between both potentials
increases, so that the right well 0f-'P(xt) is elevated and the

0 —hQ,(1)/2 Us(X)

The LIPs are the adiabatic (or dressed) potentials obtained by
diagonalizing the part of the Hamiltonian comprising the
electronic potential curves and laser couplings (the matrix in
eq 8).

The mathematical formalization proceeds by finding the
proper transformation matrix¢a(x,t), such that the Schdinger
equation for the adiabatic wave functions

A 9

ihﬁaf\(x,t) = |- f/’ﬁa’l(x,t)— SR (Xt + U Pix.t) — internal energy barrier increases. The first pulg#) causes a
ot 2m 5 similar Stark shift onU;(x) which raises the energy of the left
R 9 4 ~ A well of UgHP(x,t). Therefore, asy(t) decreases and(t) increases
19, (x,t)a—t!/fa (x| 27(x.1) (9) there is an interval of time arourigwhere the internal energy
_ barrier is suppressed, allowing the displacement of the wave
where  ®A(x1) = (D+(X,1),Po(x,1),D_(X,1))T = packet. Finallye;(t) decreases as well, so that the energy barrier

R 1) (X0, 201 ,13(x,1) T is the diagonal in the potential  is recovered and the wave packet cannot recross. During the
energy matrix/A'P(xt). If the initial wave function is placed  entire time evolutionU-"P(x,t) behaves approximately like

on a single LIP, then it will move under the influence of a single Ux(x), except for overall shifts in energy caused by the dynamic
potential. There are two terms that conspire against the adiabaticStark effects.
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Figure 6. Scheme of the mechanism of population transfer via APLIP.
The cartoon shows the LIPs at three different times. The wave packet
moves in the initial LIPUJHP, that has an internal barrier that prevents ] ) o o
the crossing of the wave packet from the left well corresponding to Figure 7. Energy-shifted electronic potentials in the diabatic repre-
the initial configurationVy(X), to the right well corresponding to the ~ Sentation showing the energy barrier that the initial wave function must

target configurationys(x). At intermediate time&Jg-P shows no internal surmount to move along the bond distance befc_)re reaching the des_ired
barrier allowing the motion of the wave packet to the desired final State. In the XAB system (a) the energy barrier and the separation
position. between the equilibrium positions is much larger than in the XAC

system (b), where the initial and final wave functions partially overlap.

The motion of the wave packet from the left well to the right . o ) )
well implies the sequence of dynamical processes that we Overcome the barrier. Indeed the initial and final wave functions

observe in the population histories. First the wave packet Partially overlap, so that the probability for a two-photon
overlaps higher vibrational levels iy(x), then it overlaps Franck-Condon tr§n3|t|on is not zero._When both pulses fully
higher vibrational levels itJs(x), and finally the wave packet ~ ©verlap, the effective two-photon Rabi frequerieys must be
stops at the equilibrium position ids(x). The selection of the  arger thanEa;, allowing the wave packet to move from one
ground vibrational level iftUs(x) is guaranteed if the dynamics ~ Potential to the other, which is signaled as a two-photon
is both temporally and spatially adiabatic, so that the shape of @bsorption process. Finally, as the pulses are switched off, the
the wave packet (its number of nodes) is not distorted. transient energy disappears, and by two-photon resonance the

C. Adiabatic Thresholds in APLIP: Geometry Consid- wave packet ends up in the bottom Wi(x). Since in APLIP
erations. As observed in the results of Figure 4, there is an the whole wave function is transferred from one potential to

energy gap between the region where STIRAP works and thethe othe_r, the energy demands for adiabatic passage will _depend
region where APLIP is effective. The threshold for APLIP on the displacement of the wave packet along the bond distance

depends on the geometry of the potentials but is not very Lha:]:s requ:ied togtca:acf:jthetflnal .f.q“"'b”“m ::r?nf)l(%éatlor:. For
sensitive with respect to changes in the pulse durations. It is Ighly hon-Franck-t.oncon fransitons, as in the system,

therefore obvious that different adiabatic requirements must be V€ expect_larger adiabatic requirements than for more "vertical®
found to adequately describe the APLIP transfer. In principle, type transitions.
a thorough examination of nonadiabatic coupligsduced by We will now assume that the wave packet is a classical
the kinetic term and the time-dependent term in eq 9 is neededParticle moving from the minimum itJy(X) to Us(x) at speed
to derive a single (or multiple) parametés that replaces the e The laser coupling via the effective Rabi frequezy; must
STIRAP condition&s. This procedure cannot be performed provide the kinetic energy so that the particle overcomes the
analytically without approximations. Here we will follow a barrier. A LandatZener model gives the probability of crossing
simpler physically motivated model that reflects some of the the barrier, which i
adiabatic requirements of the method, allowing for a simple
parametrization ofx. Py—u, ~ 1 — exp-Qqq120) (10)

Let us follow the displacement of the vibrational population
along the bond distance, from the minimumUh(x) to the with
minimum in Uz(X). In Figure 7 we show the electronic states
dressed with the photon energies for both the XAB and XAC
systems. In order that the wave function can reach the a=
equilibrium position inJs(x), the pulses must temporally provide
an energy larger than the energy barrier that separates both
minima. This stage corresponds to the Raman Stokes processewherex. is the crossing point. We assume that the process of
that initiate the dynamics. In the XAB system, the internal Ccrossing the barrier adequately describes the adiabatic passage
barrier Exar ~ 640 cnt?, which implies that the wave packet ©f the wave packet to the final electronic state. The adiabatic
must gain in average four vibrational quanta in the Raman parameter of APLIP is therefore proposedéas= Qer/20..
process to overcome the barrier. In the XAC syst&gp, ~ The parametea. can be approximately evaluated in several
110 cn1?, so that only one vibrational quantum is necessary to ways. For example, if we consider thai(x) and Us(x) are

v, dU; —U))
2h dx

(11)
x=x;
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displaced harmonic potentials with the same fundamental
frequency,w, then

U,(¥] = mo’d 12)

d
&| Us(x)

where m is the reduced mass of the molecule ahds the
distance between the potential minima. In other cases we will

use the average frequency of the potentials involved. Since we
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second one is the dependencégfvith respect to the required
displacement of the population along the bond distance in order
to reach the target state. Assuming harmonic oscillators and
substitutingEpqr in terms of the spatial distance between the
initial and final equilibrium positionsg, we obtain

2Q . h
mo>d?

Ea= (14)

assume that the kinetic energy must be larger than the energyFixing a specific yield for the final population in the target

barrier, v > (2Epa/m)*2. Substitutingd = «/8Eba,/mw2, we
obtaino. ~ 2wEpafh.

In this model the detuning of the intermediate potential is
needed to avoid the crossing of the potentldéx) and Us(x)
by Ux(X) in the course of the particle’s trajectory. This is
achieved if the absolute value of the detunig is made at
least larger tharkpa. The model cannot explain the avoided
crossing withUy(x) in resonant conditions, since it does not

incorporate quantum effects as those in the STIRAP dynamics.

For almost resonant conditions, such thxa{tc),Qa(tc) > |A|,

the effective Rabi frequency is approximatéBs. (These are
the conditions that we are exploring in this paper.) Summing
up the pieces, we obtain for the adiabatic parameter

Qi h
4Eba|w

Ea= (13)

Although the expression fafs does not depend on the time
duration of the pulses, we will still cafx an effective pulse
area, to be compared with that of the STIRAP process.

We analyze now whether eq 13 describes correctly the
adiabatic features of APLIP. We can fix a particular final
probability in the target electronic state, for examipiez 0.95,
to specify the threshold of adiabaticity in APLIP dynamics. From
the results of Figure 4 we obtain the value<f (which is Eg
for APLIP in the Franck-Condon approximation) that cor-
respond to that choice of threshol@,(P; = 0.95). For the
nonresonant cas@y| = 0.014 au) we obtain in the XAB system
Qo(P3 = 0.95)~ 0.030, 0.032, and 0.031 au for= 0.6, 1.5,
and 6 ps, respectively. In the XAC system we obt@i{P; =
0.95)~ 0.017, 0.014, and 0.014 for the same set of pulses.
is observed thaf2o(Ps; = 0.95) is larger in the XAB system,
which has a larger energy barrigs, than in the XAC system,
while the results are not very sensitive to the duration of the
pulses. Assuming tha®. ~ Qo and using eq 13, we obtain
&, ~ 50r for all of the results, showing good qualitative
agreement.

Quantitatively, the values ofs are overestimated if we

consider them to be effective pulse areas. Given that the

population transfer is still not perfect, we could exp&cto be
of the order of 2-37, using the same criteria as in the STIRAP

electronic state (for instand®; = 0.95) amounts to fixing the
adiabatic requirements, so that we obtain a linear relation
between the threshold Rabi frequency and the distance between
the potentials,

Q& 2 Py Od (15)
In Figure 8 we show how2y(P3; = 0.95) changes as a function
of d for population passage via APLIP in a model of displaced
harmonic oscillators with the same frequencies. We have chosen
a negative detuningd = —0.02 au, for the second potential,
and we have assumed tlt; ~ Qo. The results show that the
relation betweei§2p andd is only approximately linear. As we
will show in the next section, asapproaches zero, the APLIP
dynamics converges into the STIRAP dynamics, sodhatoes
not give the correct limit. Finally, the results also depart from
linearity for large values ofl. This can be expected since the
adiabatic parameter derived in our simple model depends
essentially on the adiabatic properties at the crossing between
the Ui(x) and Us(x) potentials (that is, on the two-photon
absorption process). As the distance between the potentials
increases, the whole APLIP process is dominated by the motion
of the wave packet on each potential (that is, on the Raman
processes), so that the adiabatic parameter should be derived
in terms of specific adiabatic requirements imposed on the
Raman processeés.

Previously we have estimatégd in terms of a Rabi frequency
obtained for threshold values of population transfer to the target
electronic stateQ2¢(Ps). The qualitative agreement g with
the numerical results is poorer if we base the calculation on
thresholds for selective adiabatic population transfer to the target
vibrational stateP:. In Figure 4 we observe th&q(Ps,=0)

It depends more sensitively th&o(P;) on the duration of the

pulses. For larger pulseS2(Ps,=o) is closer toQy(Ps) than
for shorter pulses. The proposed simple model, based on a
classical motion of a particle, cannot yield insight into the
adiabatic requirements for selectivity in APLIP. For the resonant
case A = 0) the qualitative agreement is also poorer, since the
model requires a detuning to explain the correct adiabatic
passage.

D. Quasi-Adiabatic Description A more quantitative picture
of the APLIP process can be obtained by applying the rotation
matrix %4(t), which diagonalizes the STIRAP Hamiltonian (see

case. The overestimation is due to several reasons. First, sinceq 3), to the APLIP Hamiltonian. By this procedure we analyze

A ~ Qo the effective two-photon Rabi process does not
correspond to that of a truly resonant process, and acttally

< Qo. Another reason is that in the derivation of eq 13 we
estimatea assuming the minimum possible kinetic energy for
the particle.

There are two more features of the adiabatic passage that arey, 9 chA( xt) =

correctly described by eq 13, at least in a qualitative way. The
first one is the quadratic dependenceigfwith respect ta€2,
Ea 0 Qe? This fact explains why the yield of population transfer

APLIP in the natural representation of the STIRAP dynamics.
Assuming that the Rabi frequencies are not dependent on
position (the FranckCondon approximation) we obtain the
Schrainger equation

XZ@QA(X t) + 228 (xt) —

17 (t)ﬁf/?s(t)@QA(X-t) (16)

in the onset of the adiabatic threshold increases much faster in

APLIP than in STIRAP, wherés [0 Q, (see Figure 4). The

where
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U,si 6 + Uscog 0+ U, + Q, v2(U, — Uy sin@)/2 Usinfo+ Uscos o — U,
%% =% V2(U, — Us) sin(20)/2 2(U, cod 6 + Uy sirfh)  v2(U, — Uy sin(29)/2 (17)
U,sirf 6 + U, cos 6 - U, V2(U, — Upsin(9)2  U,sifd + Uzcosh + U, — Q,

with 6(t) = arctanQ,(t)/Q22(t)), the adiabatic mixing angle. In  passage in the quasi-adiabatic representation is based on the
eq 17 the diagonal elements are the quasi-adiabatic LIPs (QAPs)Ydynamic changes itlgRP(xt),

that remain coupled becausg(t) is not exactly appropriate to

diagonalize the APLIP Hamiltonian. The initial quasi-adiabatic U 2*"(x,t) = U,(x) cog 6(t) + U4(X) sirf 6(t) =

wave packets are obtained d3RA(x,0) = s 1(0)y(x,0). By 1

application of a counterintuitive sequence, it can be seen that %(Qz(t)Ul(X) — Q(U;(x) (19)

D A (x.t) = cosB(t)y,(x.t) — sinB(t)ps(xt)  (18) In Figure 9 we represeritl?*"(x,t) for the XAB case. The
projection of the QAP shows the path followed by the quasi-
o o ) adiabatic wave packet. The form bg*AP(x,t) approximately
so that fort = 0, @¢4(x,0) ~ y1(x,0). The initial quasi-adiabatic  reproduces the electronic lever mechanism that allows the wave
wave packet lies itJo?*"(x,t).?® The mechanism of adiabatic  packet passage, as introduced before. Ali¢x) does not
participate in the shaping &Jo@AP(xt), so that®*A(x,t) does
not overlap with states of the intermediate potential.

In the quasi-adiabatic representation there are two sources
for couplings that move the wave packet away from the
minimum path inUgQRAP(x,t). The first one is the temporal
0.06 - e | nonadiabatic term (last term from eq 16). The second one is

% the “direct” coupling between the QAPs,

0.08 ' : : Tt

0.04 .o - s 2 (xt) = 7SIN(2)(U(x) — Ug() =

- 3 ) V2 Q,(HR(1)
K v _ s
& 5 (U1(¥) = Uy(x) 2.0 (20)

QU (P,=0.95)/a.u.
»

] 'y L This term is a consequence of choosing a simpler representation
o * which does not diagonalize the APLIP Hamiltonian. It also
(1 - incorporates the spatially nonadiabatic couplings in eq 9. The
— T T T form of the coupling (eq 20) separates the temporal from the
0 0.5 | 1.5 P 25 spatial contributions, facilitating the evaluation of its effects on

_ d/am. _ the wave packet motion. It can be observed thaRA(xt) will

Figure 8. Dependence of the threshold of adiabatic passage in APLIP ho gmall at the positions and times where the amplitude of

with respect to the distance between the equilibrium separations of theqsoQA(x,t) is large during the passage. For instance, at initial and

initial and target electronic states. As the distance between the nuclearf. i N hil . . . h
configurations increases, the amplitude of the pulses must increaselin@l timesQi()Qx(t) ~ 0, while at intermediate times the wave

approximately linearly to ensure adiabatic passage. The results arePacket is near the avoided crossing regieg where
obtained for a model system of three displaced harmonic oscillators. U1(Xc) &~ Ua(Xc), S0 that the coupling ternue.A(x,t), is small.

0.034
0.082

0.03
0.028
0.026
0.024
0.022
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0018 [
0.016
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Figure 9. Structure of the quasi-adiabatic LIB,R*P(x,t), that allows adiabatic passage via APLIP according to the quasi-adiabatic description.
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5 10* 10? o2 o Figure 11. Schematic description of the role of detuning in STIRAP
10 Q / 1 ! according to the quasi-adiabatic representation. Althdugit® does
48 not depend on detuning, for blue detunidgl*® is always far from

Figure 10. Population transfer between an initial and target electronic the other LIPs when the couplingss.*, are important, so that the
potentials of identical shape as a function of the pulse amplitiges ~ POPulation is solely transferred ido?*". However, for red detuning
The transfer is selective and robust at a threshold corresponding to theU- %" crosses with,?*" both at the beginning and end of the process,
adiabatic requirements of STIRAP and is not limitedEgsncreases, therefore inducing nonadiabatic population transfetJt&"".

so that the STIRAP and APLIP schemes converge. The final target

populationP3,—o is almost unity for allEo, and the time-averaged the quasi-adiabatic description. For blue detuning, the energy
population in the intermediate electronic stéelidrops linearly with of Ug@AP(x,t) (or UgHP(x,t)) is above the energy dfi_QAP(xt)

Eo. The S‘I)Il'd Ilrgs Lep_resent the reslults for resonantht{anﬁfer With @ 54 pbelow the energy dfi;AP(x,t). As the amplitude of the
vibrational level in the intermediate electronic state, while the dotted- field increases, by Stark shift these QAPs (or LIPs) separate

line curves represent the results using a blue detuningy sf —0.02 . .
au. The same results are obtained with red detuning. The threshold of T0M €ach other due to th&€Q(t) term in the equations (see

population transfer depend with detuning in a manner expected for €9 17). Then]UR4P(x,t) — ULQ4P(x,t)| > 1o+ ?A(x,t), and the
nonresonant STIRAP. Otherwise the same results are obtained foreffect of the couplings can be neglected. The dynamics can be
different detuning a&, increases. followed solely by eq 21. However, when the frequencies are

. . detuned to the red o¥(x), at initial times the energy of
If both potentials have approximately the same shape and Us@AP(x 1) is also below the energy df_QAP(xt). When the

equilibrium configuration, th(_e[uOi_QA(x,_t) =0 and L.JOQ.AP(X't) amplitudes of the fields increase, by Stark shift?AP(x,t) will

- UO.UP(X’I); that is, the quasi-adiabatic potential is indeed the .o UoRAP(x,t), so that the adiabatic couplings cannot be
light-induced potential. In this limit, of (.:ourstioL'P(x,t) - Ul(x). neglected even ifigL2*(x,t) is as small as before. Now eq 21

— lJt3()|()’ SO tg_at tthere_zrsre g%(gzﬁ]gm'csd ((:lhspla"isgrl_r;gnts) Itnhtrgje does not provide an accurate description of the dynamics. The
spatial coordinate. 1he AP and the MeNod e LIP will actually look like URAP(x,t) at initial and final
converge. Th|s means that adiabatic passage happens for a imes (before the nonadiabatic crossing) and lké&AP(x,t) at
pulse amplitudess, larger than the adiabatic threshold for intermediate times. Moreover, during the crossings, the coupling

STIRAP' given b}_és (eq7), for resonant_condltlons. Th? res_ults induces spatial distortions in the wave packet.
for this hypothetical molecular scenario are shown in Figure

10, where we use the same harmonic potential curve for the
ground and final target electronic state.

In general, if the couplings are weak, we can assume that We have studied the control of vibrationally selective highly
there are no transitions between different QAPs, so that the wavenon-Franck-Condon electronic transitions by ultrafast laser
packet follows the equation pulses, as a function of the geometry of the electronic states

and the intensity and duration of the pulses. We have explored

L0 A _ AP A the efficiency and robustness of an adiabatic passage scheme

'ha_tq)OQ (x0 = " 2m 372+ Ug* x| 6> () (21) on the basis of a particular class of time delay control using a

counterintuitive sequence of two laser pulses.
The kinetic and potential operators can distort the shape of For moderate intensities, the scheme is generally named
D RA(x,t), but they do not change the different contributions of STIRAP and makes use of a resonant transition to an intermedi-
the electronic potentials provided by eq 18. Therefore, the ate state that works as a “wave function bridge” between the
electronic populations(t) = Q22(t)/Q0?(t) andP3(t) = Q43(t)/ initial and target states. The efficiency of the scheme can be
Qo?(t), follow the same dynamical behavior as the vibrational estimated by a simple adiabatic condition, given by eq 1.
state populations in STIRAP, a result observed in Figure 5.  However, the adiabatic condition is no longer useful in the strong

Finally, we discuss the role of the detuning in the quasi- intensity regime, where STIRAP dynamics is no longer selective
adiabatic representation. According to our model, the effect of or efficient for population transfer. For strong pulses the two-
the detuning is incorporated Wp(X), which is the energy shifted  photon electronic transition can be controlled in a very robust
intermediate potential. Sindéy(X) does not appear idRAP(x,t) way by another scheme, named APLIP, with many similar
or in uor?” (x,t), it would seem that the detuning does not play features. In previous contributiol¥$%22 we have studied the
any role in the APLIP process, which is not consistent with the dynamics of APLIP and showed its performance using frequency
numerical result$®20 The schematic picture of Figure 11 detuned transitions and both counterintuitive and intuitive
explains how the effects of the detuning can be incorporated in sequences. Here we propose a very simple model for APLIP

VI. Final Remarks

h2 82
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and we concentrate on the relations between both methods in

terms of their adiabatic properties, following the dynamics for

different electronic state geometries, time durations, and increas-

ing pulse intensities. Whereas adiabatic following in STIRAP

is based on the properties of a single adiabatic state and requires

fine control on the Hamiltonian in the adiabatic representation,
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